Esteban00007
commited on
Upload PPO LunarLander-v2 trained agent
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-LunarLander-v2.zip +2 -2
- ppo-LunarLander-v2/data +22 -22
- ppo-LunarLander-v2/policy.optimizer.pth +1 -1
- ppo-LunarLander-v2/policy.pth +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 292.42 +/- 20.61
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7a9149f637f0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a9149f63880>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a9149f63910>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a9149f639a0>", "_build": "<function ActorCriticPolicy._build at 0x7a9149f63a30>", "forward": "<function ActorCriticPolicy.forward at 0x7a9149f63ac0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7a9149f63b50>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a9149f63be0>", "_predict": "<function ActorCriticPolicy._predict at 0x7a9149f63c70>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a9149f63d00>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a9149f63d90>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7a9149f63e20>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7a90eb94bb40>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1733324111487006595, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAADqszwpoHO6CuRbuvpYhrXyDdM5aSSAOQAAgD8AAIA/zevsvFIFlDwkuEi9vH5KvgzCZL0M6Zc9AAAAAAAAAABmobI8XEtRur4RsrsCezs4mPemuMJIZToAAIA/AACAP2bfbj1cgyW6NjyGuMCFvrMdNMA6YBidNwAAgD8AAIA/Zg7QPK6xg7oN8Hg58Pf4NCXFpzqcV464AACAPwAAgD9mHCo89kB6ujplNjqiBrU0Xk10u2UJVLkAAIA/AACAP5q6HT57vpA/LwAEP7yPIL8oVfQ9Nrb7PQAAAAAAAAAAzY2pPI/Sc7oBaSS59wVEtHdH9Tp2oz84AACAPwAAgD+aJE+9XA9+uhJjgDpV1sQzlg4Su5+vk7kAAIA/AACAP1qtDz4F5YK7tGIvOn6NfbdiRcS8+yNPuQAAgD8AAIA/WlKCPa59k7pd4E+6hjE7tRYtFLqmr3A5AACAPwAAgD/N1Ck8KYhMup08ErwOq1a2Dp6JuyDawDUAAIA/AACAP4BxZD3DRSm6+4DBtoScvTEBOIa7lijhNQAAgD8AAIA/zddAPexpoblYvlE6/JPuNGDiuLrjune5AACAPwAAgD/N2wM9H53AuYC5G7h6/oWzIy5eumWPNTcAAIA/AACAPwAYq7vDkW26lXY4OL7RRDP26lg6CKBStwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGOMOIZZSvWMAWyUTegDjAF0lEdArAqIXXRPXXV9lChoBkdAZW3foicG1WgHTegDaAhHQKwMJl5nlGR1fZQoaAZHQGLOCO3lS0loB03oA2gIR0CsQ0oWHk92dX2UKGgGR0Bi9lFfAsTWaAdN6ANoCEdArERSI3zcynV9lChoBkdAZGiRGMGX5WgHTegDaAhHQKxIayQgcLl1fZQoaAZHQGi1Dz7MxGloB03oA2gIR0CsTPb/wRXfdX2UKGgGR0BfP3xWkrPMaAdN6ANoCEdArE0Ie7tiQXV9lChoBkdAY6vQswtap2gHTegDaAhHQKxNXenhsIp1fZQoaAZHQF/6KLbYbsFoB03oA2gIR0CsTZYu01IidX2UKGgGR0BxT4BtDUmVaAdNsQNoCEdArE3HVEuxr3V9lChoBkdAY6WYeDFqBWgHTegDaAhHQKxOBGy5Zr51fZQoaAZHQGjvrpzLfUFoB03oA2gIR0CsTtDfWMCLdX2UKGgGR0BmWFznzQNTaAdN6ANoCEdArE8Jb6guiHV9lChoBkdAZ7e3xWkrPWgHTegDaAhHQKxROMOPNml1fZQoaAZHQGTvK94/u9hoB03oA2gIR0CsWoNFa0QcdX2UKGgGR0Bl7LRUm2LHaAdN6ANoCEdArFxyBd2Pk3V9lChoBkdAZSdMK1G9YmgHTegDaAhHQKxdK2CNCJJ1fZQoaAZHQGPDESdvsJJoB03oA2gIR0CsXq8/2TPjdX2UKGgGR0Bmv1T3qRlpaAdN6ANoCEdArGXqBiCrcXV9lChoBkdAZ+B668QI2WgHTegDaAhHQKxm9Vmz0H11fZQoaAZHQGZEFNlAeJZoB03oA2gIR0CsawekYXO4dX2UKGgGR0Bg/xElVtGeaAdN6ANoCEdArG+F36hxpHV9lChoBkdAWxRdAxBVuWgHTegDaAhHQKxvmNMoMKF1fZQoaAZHQF6N/yXlbNdoB03oA2gIR0Csb/MWGh24dX2UKGgGR0Bmie0JF9a2aAdN6ANoCEdArHBFz4k/r3V9lChoBkdAY5/ON5t3wGgHTegDaAhHQKxwknrIHTt1fZQoaAZHQGPxHObAk9loB03oA2gIR0CscOVog3cYdX2UKGgGR0BhmMLtu1neaAdN6ANoCEdArHIFfmcOLHV9lChoBkdAaKh60IC2dGgHTegDaAhHQKxyTq33HrB1fZQoaAZHQGU79ld1MdtoB03oA2gIR0CsdWZmh/RWdX2UKGgGR0BnbWmR/3FlaAdN6ANoCEdArH2I8KXv6XV9lChoBkdAaAY5S3solWgHTegDaAhHQKx/HCTlkpZ1fZQoaAZHQGI7RYA80UJoB03oA2gIR0Csf9fEn9ehdX2UKGgGR0BjPByZKFqSaAdN6ANoCEdArIFSdFvyb3V9lChoBkdAZf0wqy4WlGgHTegDaAhHQKy4uLCvX9R1fZQoaAZHQGagZntfG+9oB03oA2gIR0Csucp7TlT4dX2UKGgGR0BnIO1MM7U5aAdN6ANoCEdArL31X3g1nHV9lChoBkdAZu3DCxeLN2gHTegDaAhHQKzCyTfzjFR1fZQoaAZHQGQP0mdAgPpoB03oA2gIR0CswuQ3YL9ddX2UKGgGR0BljkpVjqfOaAdN6ANoCEdArMNaaG5+Y3V9lChoBkdAZQCrsjVx0mgHTegDaAhHQKzDrW6shgV1fZQoaAZHQF9fw6hg3LpoB03oA2gIR0Csw/p4jbBXdX2UKGgGR0BlsYB1cMVlaAdN6ANoCEdArMRU3++/QHV9lChoBkdAYKvbeuV5bGgHTegDaAhHQKzFoqur6tV1fZQoaAZHQGLE8MEzO5doB03oA2gIR0CsxgRWtEG8dX2UKGgGR0BmnNhb4agmaAdN6ANoCEdArMlBAjY7JXV9lChoBkdAZF9o7FKkEmgHTegDaAhHQKzRg33pOet1fZQoaAZHQGOow97ngYRoB03oA2gIR0Cs0yAmAskIdX2UKGgGR0BgO0L4N7SiaAdN6ANoCEdArNPngtOEd3V9lChoBkdAZZhgYxcmjWgHTegDaAhHQKzVY7wrlNl1fZQoaAZHQGDq6tLcsUZoB03oA2gIR0Cs3JwV9F4LdX2UKGgGR0BpQlmapgkUaAdN6ANoCEdArN3tII4VAXV9lChoBkdAZHBrOZ9d/2gHTegDaAhHQKzjbT5wfhd1fZQoaAZHQGSzcLSeAd5oB03oA2gIR0Cs59x82JizdX2UKGgGR0BoH82xY7q6aAdN6ANoCEdArOfuiL2pQ3V9lChoBkdAZKONmUW2w2gHTegDaAhHQKzoP3JPqLV1fZQoaAZHQGd4Xm/336BoB03oA2gIR0Cs6H0163RYdX2UKGgGR0BmnL0e2d/baAdN6ANoCEdArOiyoVEeAHV9lChoBkdAZkl9rGipN2gHTegDaAhHQKzo8xwAEMd1fZQoaAZHQGam9znzQNVoB03oA2gIR0Cs6cF2FFlTdX2UKGgGR0BcLl+I/JNkaAdN6ANoCEdArOn9mjCYTnV9lChoBkdAZc9Jo0ygw2gHTegDaAhHQKzsPCUHIIZ1fZQoaAZHQGE1LDhtLthoB03oA2gIR0Cs9EDej2zwdX2UKGgGR0Bk0706HTJAaAdN6ANoCEdArPX8HbAUL3V9lChoBkdAZDCAAAAAAGgHTegDaAhHQKz2xg3Lmp51fZQoaAZHQGikO0LMLWtoB03oA2gIR0Cs+INdqtYCdX2UKGgGR0BeYiGahHskaAdN6ANoCEdArS/8Vgx8D3V9lChoBkdAZcso/A0sOGgHTegDaAhHQK0xdhESdvt1fZQoaAZHQGjUQyZa3ZxoB03oA2gIR0CtNrM0P6KtdX2UKGgGR0Bk3mUdJaq0aAdN6ANoCEdArTtJeC04R3V9lChoBkdAZgMpbUwztWgHTegDaAhHQK07XKUVzp51fZQoaAZHQGROxsdkrgBoB03oA2gIR0CtO7uZ9d/sdX2UKGgGR0BiqZ2nsLOSaAdN6ANoCEdArTv2zhP0qnV9lChoBkdAcQVfNzKcNGgHTWUCaAhHQK08D++dsi11fZQoaAZHQGNLwpnYg7poB03oA2gIR0CtPC3l8w6AdX2UKGgGR0BnFg3gk1MuaAdN6ANoCEdArTxvAbhm5HV9lChoBkdAYuk+qzZ6EGgHTegDaAhHQK09OwSJ0nx1fZQoaAZHQGVwOuA7PppoB03oA2gIR0CtPXKs+3YudX2UKGgGR0Bme3OQhfShaAdN6ANoCEdArT+/HcUM5XV9lChoBkdAbrcONo8IRmgHTSMCaAhHQK1ILr2xptd1fZQoaAZHQGPW0eEIw/RoB03oA2gIR0CtSVGukk8idX2UKGgGR0BmlVepn6EbaAdN6ANoCEdArUpNUVBUrHV9lChoBkdAZTgSr5qM32gHTegDaAhHQK1MWsMAmzB1fZQoaAZHQGgCu7YkE9toB03oA2gIR0CtVKQz1scidX2UKGgGR0BoWh73PAwgaAdN6ANoCEdArVWladMCcXV9lChoBkdAYWv+S8rZrmgHTegDaAhHQK1eJuVopQV1fZQoaAZHQGF5VKPGQ0ZoB03oA2gIR0CtXjqzZ6D5dX2UKGgGR0Bms6Skj5bhaAdN6ANoCEdArV6O4Cp3o3V9lChoBkdAYVGp6QeV9mgHTegDaAhHQK1eyrR0EHN1fZQoaAZHQGUxdU83dbhoB03oA2gIR0CtXuL4nF5wdX2UKGgGR0BkGemJm/WUaAdN6ANoCEdArV7/99+gDnV9lChoBkdAZF9pj+aScWgHTegDaAhHQK1fQF+NLlF1fZQoaAZHQGSXCbc45tFoB03oA2gIR0CtYBUgB91EdX2UKGgGR0Bjt3jwQUYbaAdN6ANoCEdArWBQTsY2sXV9lChoBkdAZN/eEZiuuGgHTegDaAhHQK1irfHggox1fZQoaAZHQGYiA6U7jkxoB03oA2gIR0CtbMOJcgQpdX2UKGgGR0BxkQmICU5daAdNxgNoCEdArW1lSsKb8XV9lChoBkdAZfJY6GQCCGgHTegDaAhHQK1t11anrIJ1fZQoaAZHQGUiVK5CngpoB03oA2gIR0CtcA7xd6cBdX2UKGgGR0Blt0XHim2taAdN6ANoCEdArXbqk2xY73VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.1+cu121", "GPU Enabled": "False", "Numpy": "1.26.4", "Cloudpickle": "3.1.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7bec2f2480d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7bec2f248160>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7bec2f2481f0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7bec2f248280>", "_build": "<function ActorCriticPolicy._build at 0x7bec2f248310>", "forward": "<function ActorCriticPolicy.forward at 0x7bec2f2483a0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7bec2f248430>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7bec2f2484c0>", "_predict": "<function ActorCriticPolicy._predict at 0x7bec2f248550>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7bec2f2485e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7bec2f248670>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7bec2f248700>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7bebd1b9ef80>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 3014656, "_total_timesteps": 3000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1733391396406562111, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAE0Xoz2BkX8+wScRvrvxGL+RP8o9x+ssvgAAAAAAAAAAZkx+POGUg7r+TJC7S6xDOer5PbuojKm4AACAPwAAgD9m3ri7n3Cju0jm873NVCk8NtXvPG0fFL0AAIA/AACAPzOJ6zwp+H66FwmxugnxJ7VjDT66qtHOOQAAgD8AAIA/ZgaFPQg40z5VPWe+98pHvzR6tz2T3ki+AAAAAAAAAACa7J284X6Nuo81jTecvG4ypCoNO1QRpLYAAIA/AACAP2am7zqP1mm6LkJ4OqrjwzXWsKu6gOKPuQAAgD8AAIA/ZoRIveHkgbq0kK48BFWLMkV0srpVMgA0AACAPwAAgD+NApu9JzysPxpcNr9cb9G+Df1/OKIuN74AAAAAAAAAABobCT08EjY+nsuNvsfSt75ifwy+VvFivgAAAAAAAAAAmqlUvNfgTjxc0CY+o4eSvo2UDj4Why0+AAAAAAAAgD8ATze97/pHPcfFoT7VQtW+1IjVPRSchj4AAAAAAAAAAPNC+L3KhTM+aMVsPpyt+74wHaQ7oD32PQAAAAAAAAAAzdz/O49iZboHzZ4yOmBvsTpKLLs4VR2zAACAPwAAgD/NzCi50tmku8YOLLwS4ZE8r/DsPAb7d70AAIA/AACAP4OIfb5yFl4/syWuvgBpGL+PCvy+rk2ovQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.004885333333333408, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHKsbPUrkKiMAWyUS4iMAXSUR0C4iKCiItUXdX2UKGgGR0Bx9QjiXIEKaAdLvGgIR0C4iKqS9ugpdX2UKGgGR0BxefrVvuPWaAdLrGgIR0C4iM6PCEYgdX2UKGgGR0Bv+iMrEtNBaAdLpmgIR0C4iNp4nndPdX2UKGgGR0BzN+DnNgSfaAdLuWgIR0C4iNn3Hq/udX2UKGgGR0BziKvfTCtSaAdLvGgIR0C4iN/6j323dX2UKGgGR0BzRgE0SAYpaAdL0GgIR0C4iQ+iN83NdX2UKGgGR0Bvfp79hqj8aAdLmmgIR0C4iRJnYg7pdX2UKGgGR0Bwwqd5IH1OaAdLjmgIR0C4iRGBJ7LMdX2UKGgGR0BzEOSPluFYaAdLv2gIR0C4oxeh0yP/dX2UKGgGR0BxnAlSjxkNaAdLlGgIR0C4oy40hvBKdX2UKGgGR0By+WzZ6D5CaAdLt2gIR0C4ozi/9Hc2dX2UKGgGR0By7YZAIIGAaAdLoGgIR0C4o0EYwZfldX2UKGgGR0BwOCi48U22aAdLp2gIR0C4o3OGXXyzdX2UKGgGR0BxOQybhFVlaAdLrWgIR0C4o3eF10T2dX2UKGgGR0Bx+7qKP4mDaAdLnGgIR0C4o5QPmPo3dX2UKGgGR0BysvbzshPkaAdLimgIR0C4o6E6tDD1dX2UKGgGR0Bx+dg1FYuCaAdLpWgIR0C4o94BFNL2dX2UKGgGR0BuiU34sVcmaAdLs2gIR0C4o+ZCOWB0dX2UKGgGR0BTx1jqfOD8aAdLlWgIR0C4o/h5X2dvdX2UKGgGR0Bx5ZokAxSHaAdLuWgIR0C4o/2h/RVqdX2UKGgGR0BxH8GxD9fkaAdLpGgIR0C4pBIwEhaDdX2UKGgGR0BzR7AN5MURaAdL6mgIR0C4pByhN/OMdX2UKGgGR0BzRDh99c8laAdLqWgIR0C4pGRp5/smdX2UKGgGR0B0OS83++/QaAdL02gIR0C4pGoX40uUdX2UKGgGR0Bnm23KB/ZvaAdN6ANoCEdAuKR2etjkMnV9lChoBkdAcV7LgXMyJ2gHS61oCEdAuKSELofSyHV9lChoBkdAc8cwx33Yc2gHS79oCEdAuKSbCcf/3nV9lChoBkdAcb/IAOrhi2gHS7loCEdAuKScgeRxLnV9lChoBkdAcpsRNATqS2gHS6RoCEdAuKSeW3Sa3XV9lChoBkdAcaR5n13+uWgHS6NoCEdAuKS8NhE0BXV9lChoBkdAdAlOtnwocGgHS71oCEdAuKTLoaDPGHV9lChoBkdAcQswJgLJCGgHS6ZoCEdAuKTNalk6LnV9lChoBkdAcLYUtZmqYWgHS45oCEdAuKTwophF3XV9lChoBkdAb/X9m6GxlmgHS6RoCEdAuKURHhCMP3V9lChoBkdAckJnJkoWpWgHS8VoCEdAuKUxg+hXbXV9lChoBkdAcC+pjtoi92gHS6NoCEdAuKUxn/T9bXV9lChoBkdAc2axrBTGYWgHS8doCEdAuKU8D6nBL3V9lChoBkdAccD1HvttymgHS4FoCEdAuKVtgKF7D3V9lChoBkdAcOtzeGfwqmgHS5poCEdAuKVxUaQ3gnV9lChoBkdAcLx5AhStNmgHS4RoCEdAuKVzn6l+E3V9lChoBkdAcU6O8CgbqGgHS6RoCEdAuKWOYsunM3V9lChoBkdAcjP8VHnU2GgHS5loCEdAuKWWubI91XV9lChoBkdAc4kFpPAO8WgHS79oCEdAuKWfTMJQcnV9lChoBkdAc4LwqRU3oGgHS79oCEdAuKWjYao/A3V9lChoBkdAc1jalDWsimgHS/poCEdAuKW00CRwInV9lChoBkdAcpzXGOuJUGgHS5JoCEdAuKW6fg75mHV9lChoBkdAcdt0se4kNWgHS55oCEdAuKW/PSlWO3V9lChoBkdAcW1D9fkWAWgHS6VoCEdAuKXYFC9h7XV9lChoBkdAcrNGmk30gGgHS7FoCEdAuKYOWTot+XV9lChoBkdAccg9IPK+z2gHS5JoCEdAuKYZmHxjKHV9lChoBkdAcoquqWC2+mgHS7RoCEdAuKYwyGi5/nV9lChoBkdAcQeDIRywOmgHS7doCEdAuKZdsLv1DnV9lChoBkdAcvBCv5gw5GgHS5poCEdAuKZnSYw7DHV9lChoBkdAcinn+AEt/WgHS85oCEdAuKZ5jAi3X3V9lChoBkdAciBEQXhwVGgHS7JoCEdAuKaNwkxASnV9lChoBkdAcKmrRjSXt2gHS4hoCEdAuKaQR02ca3V9lChoBkdAclXz/ZM+NmgHS6BoCEdAuKah29tdiXV9lChoBkdAcZCm0VrRB2gHS5poCEdAuKavssxwhnV9lChoBkdAcjZW/rSmZWgHS7doCEdAuKbEvXbudHV9lChoBkdAcwdHBDXvpmgHS9doCEdAuKbG5Zr57HV9lChoBkdAc9X4G2TgVGgHS8ZoCEdAuKbM3sHB13V9lChoBkdAcbviYLLIP2gHS7BoCEdAuKbOUA1ejXV9lChoBkdAcNnd7v5P/WgHS81oCEdAuKbdceKba3V9lChoBkdAcZT8stkFwGgHS7doCEdAuKb3zd1uBXV9lChoBkdAcusc4o7V8WgHS75oCEdAuKc4+9rXUnV9lChoBkdAcfiBkqc3EWgHS7ZoCEdAuKc3x0+1SnV9lChoBkdAcacezlcQiGgHS7RoCEdAuKdMJng5znV9lChoBkdAcsmqebutwWgHS5loCEdAuKdYdHUc43V9lChoBkdAcSlNJvo/zWgHS5toCEdAuKeCYnfEXXV9lChoBkdAcypKQaJhv2gHS8RoCEdAuKeUg4ffXXV9lChoBkdAcW6oNNJvpGgHS41oCEdAuKejBLwnY3V9lChoBkdAb5+P+XJHRWgHS6doCEdAuKeqm0mdAnV9lChoBkdAbw2NVinYQWgHS5JoCEdAuKeqMPz4DnV9lChoBkdAc7bS4vvjO2gHS7NoCEdAuKep6sySFHV9lChoBkdAcQDrSmZVn2gHS5FoCEdAuKewV32VV3V9lChoBkdAc8nozeoDPmgHS8toCEdAuKe8qUeMh3V9lChoBkdAcnJ0VJtix2gHS7toCEdAuKfxy0a6z3V9lChoBkdAc8KWeYlY2mgHS9FoCEdAuKf41aW5Y3V9lChoBkdAcmmLowEhaGgHS7ZoCEdAuKf7CO3lS3V9lChoBkdAcktFcY64lWgHS45oCEdAuKgss3AEdXV9lChoBkdAcq3SydFvymgHS9RoCEdAuKhFfWtlqnV9lChoBkdAcyzWOIZZS2gHS75oCEdAuKhnk4m1IHV9lChoBkdAcewuzhP0qmgHS6toCEdAuKhogPmPo3V9lChoBkdAc99cKPXCj2gHS9NoCEdAuKiIyZa3Z3V9lChoBkdAcqzOqvNeMWgHS59oCEdAuKim1jRUm3V9lChoBkdAb+vt65XlsGgHS6NoCEdAuKiuymhufnV9lChoBkdAcMgqfOD8L2gHS6loCEdAuKi4RBeHBXV9lChoBkdAcf9Ud7v5QGgHS7ZoCEdAuKi69ytFKHV9lChoBkdAcxvWGRFI/mgHS8xoCEdAuKjMsmOU+3V9lChoBkdAc8L2i+L3sWgHS9FoCEdAuKj2nCO3lXV9lChoBkdAcwcv6j323GgHS9ZoCEdAuKkMB3iaRnV9lChoBkdAcN5O/L1VYWgHS61oCEdAuKkWMGX5WXV9lChoBkdAc3PngYP5HmgHS7doCEdAuKkeWNWEK3V9lChoBkdAcw/SGJvYOGgHS95oCEdAuKkkmAskIHV9lChoBkdAcdDC2+fyw2gHS7loCEdAuKkqzXz19XV9lChoBkdAcVOVOKwY+GgHS5FoCEdAuKk1a5f+j3V9lChoBkdAceAF/QSi/WgHS4poCEdAuKlIa3qiXnV9lChoBkdAcoQTkyULUmgHS8hoCEdAuKluPLgXM3V9lChoBkdAbyWgam4y5GgHS5doCEdAuKmmU0Nz83VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 3680, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 20, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.1+cu121", "GPU Enabled": "False", "Numpy": "1.26.4", "Cloudpickle": "3.1.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:844155ed63f3f08589eab06d9cc1ef58284423fc9cac17999206226dc4b81685
|
3 |
+
size 147383
|
ppo-LunarLander-v2/data
CHANGED
@@ -4,34 +4,34 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"extract_features": "<function ActorCriticPolicy.extract_features at
|
14 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
15 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
16 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
17 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
18 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
-
"_abc_impl": "<_abc._abc_data object at
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
24 |
-
"num_timesteps":
|
25 |
-
"_total_timesteps":
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
-
"start_time":
|
30 |
"learning_rate": 0.0003,
|
31 |
"tensorboard_log": null,
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
-
":serialized:": "
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -41,17 +41,17 @@
|
|
41 |
"_episode_num": 0,
|
42 |
"use_sde": false,
|
43 |
"sde_sample_freq": -1,
|
44 |
-
"_current_progress_remaining": -0.
|
45 |
"_stats_window_size": 100,
|
46 |
"ep_info_buffer": {
|
47 |
":type:": "<class 'collections.deque'>",
|
48 |
-
":serialized:": "
|
49 |
},
|
50 |
"ep_success_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
52 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
},
|
54 |
-
"_n_updates":
|
55 |
"observation_space": {
|
56 |
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
@@ -77,14 +77,14 @@
|
|
77 |
"_np_random": null
|
78 |
},
|
79 |
"n_envs": 16,
|
80 |
-
"n_steps":
|
81 |
"gamma": 0.999,
|
82 |
"gae_lambda": 0.98,
|
83 |
"ent_coef": 0.01,
|
84 |
"vf_coef": 0.5,
|
85 |
"max_grad_norm": 0.5,
|
86 |
"batch_size": 64,
|
87 |
-
"n_epochs":
|
88 |
"clip_range": {
|
89 |
":type:": "<class 'function'>",
|
90 |
":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7bec2f2480d0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7bec2f248160>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7bec2f2481f0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7bec2f248280>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7bec2f248310>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7bec2f2483a0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7bec2f248430>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7bec2f2484c0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7bec2f248550>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7bec2f2485e0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7bec2f248670>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7bec2f248700>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7bebd1b9ef80>"
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 3014656,
|
25 |
+
"_total_timesteps": 3000000,
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
+
"start_time": 1733391396406562111,
|
30 |
"learning_rate": 0.0003,
|
31 |
"tensorboard_log": null,
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAE0Xoz2BkX8+wScRvrvxGL+RP8o9x+ssvgAAAAAAAAAAZkx+POGUg7r+TJC7S6xDOer5PbuojKm4AACAPwAAgD9m3ri7n3Cju0jm873NVCk8NtXvPG0fFL0AAIA/AACAPzOJ6zwp+H66FwmxugnxJ7VjDT66qtHOOQAAgD8AAIA/ZgaFPQg40z5VPWe+98pHvzR6tz2T3ki+AAAAAAAAAACa7J284X6Nuo81jTecvG4ypCoNO1QRpLYAAIA/AACAP2am7zqP1mm6LkJ4OqrjwzXWsKu6gOKPuQAAgD8AAIA/ZoRIveHkgbq0kK48BFWLMkV0srpVMgA0AACAPwAAgD+NApu9JzysPxpcNr9cb9G+Df1/OKIuN74AAAAAAAAAABobCT08EjY+nsuNvsfSt75ifwy+VvFivgAAAAAAAAAAmqlUvNfgTjxc0CY+o4eSvo2UDj4Why0+AAAAAAAAgD8ATze97/pHPcfFoT7VQtW+1IjVPRSchj4AAAAAAAAAAPNC+L3KhTM+aMVsPpyt+74wHaQ7oD32PQAAAAAAAAAAzdz/O49iZboHzZ4yOmBvsTpKLLs4VR2zAACAPwAAgD/NzCi50tmku8YOLLwS4ZE8r/DsPAb7d70AAIA/AACAP4OIfb5yFl4/syWuvgBpGL+PCvy+rk2ovQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
41 |
"_episode_num": 0,
|
42 |
"use_sde": false,
|
43 |
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.004885333333333408,
|
45 |
"_stats_window_size": 100,
|
46 |
"ep_info_buffer": {
|
47 |
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWV4QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHKsbPUrkKiMAWyUS4iMAXSUR0C4iKCiItUXdX2UKGgGR0Bx9QjiXIEKaAdLvGgIR0C4iKqS9ugpdX2UKGgGR0BxefrVvuPWaAdLrGgIR0C4iM6PCEYgdX2UKGgGR0Bv+iMrEtNBaAdLpmgIR0C4iNp4nndPdX2UKGgGR0BzN+DnNgSfaAdLuWgIR0C4iNn3Hq/udX2UKGgGR0BziKvfTCtSaAdLvGgIR0C4iN/6j323dX2UKGgGR0BzRgE0SAYpaAdL0GgIR0C4iQ+iN83NdX2UKGgGR0Bvfp79hqj8aAdLmmgIR0C4iRJnYg7pdX2UKGgGR0Bwwqd5IH1OaAdLjmgIR0C4iRGBJ7LMdX2UKGgGR0BzEOSPluFYaAdLv2gIR0C4oxeh0yP/dX2UKGgGR0BxnAlSjxkNaAdLlGgIR0C4oy40hvBKdX2UKGgGR0By+WzZ6D5CaAdLt2gIR0C4ozi/9Hc2dX2UKGgGR0By7YZAIIGAaAdLoGgIR0C4o0EYwZfldX2UKGgGR0BwOCi48U22aAdLp2gIR0C4o3OGXXyzdX2UKGgGR0BxOQybhFVlaAdLrWgIR0C4o3eF10T2dX2UKGgGR0Bx+7qKP4mDaAdLnGgIR0C4o5QPmPo3dX2UKGgGR0BysvbzshPkaAdLimgIR0C4o6E6tDD1dX2UKGgGR0Bx+dg1FYuCaAdLpWgIR0C4o94BFNL2dX2UKGgGR0BuiU34sVcmaAdLs2gIR0C4o+ZCOWB0dX2UKGgGR0BTx1jqfOD8aAdLlWgIR0C4o/h5X2dvdX2UKGgGR0Bx5ZokAxSHaAdLuWgIR0C4o/2h/RVqdX2UKGgGR0BxH8GxD9fkaAdLpGgIR0C4pBIwEhaDdX2UKGgGR0BzR7AN5MURaAdL6mgIR0C4pByhN/OMdX2UKGgGR0BzRDh99c8laAdLqWgIR0C4pGRp5/smdX2UKGgGR0B0OS83++/QaAdL02gIR0C4pGoX40uUdX2UKGgGR0Bnm23KB/ZvaAdN6ANoCEdAuKR2etjkMnV9lChoBkdAcV7LgXMyJ2gHS61oCEdAuKSELofSyHV9lChoBkdAc8cwx33Yc2gHS79oCEdAuKSbCcf/3nV9lChoBkdAcb/IAOrhi2gHS7loCEdAuKScgeRxLnV9lChoBkdAcpsRNATqS2gHS6RoCEdAuKSeW3Sa3XV9lChoBkdAcaR5n13+uWgHS6NoCEdAuKS8NhE0BXV9lChoBkdAdAlOtnwocGgHS71oCEdAuKTLoaDPGHV9lChoBkdAcQswJgLJCGgHS6ZoCEdAuKTNalk6LnV9lChoBkdAcLYUtZmqYWgHS45oCEdAuKTwophF3XV9lChoBkdAb/X9m6GxlmgHS6RoCEdAuKURHhCMP3V9lChoBkdAckJnJkoWpWgHS8VoCEdAuKUxg+hXbXV9lChoBkdAcC+pjtoi92gHS6NoCEdAuKUxn/T9bXV9lChoBkdAc2axrBTGYWgHS8doCEdAuKU8D6nBL3V9lChoBkdAccD1HvttymgHS4FoCEdAuKVtgKF7D3V9lChoBkdAcOtzeGfwqmgHS5poCEdAuKVxUaQ3gnV9lChoBkdAcLx5AhStNmgHS4RoCEdAuKVzn6l+E3V9lChoBkdAcU6O8CgbqGgHS6RoCEdAuKWOYsunM3V9lChoBkdAcjP8VHnU2GgHS5loCEdAuKWWubI91XV9lChoBkdAc4kFpPAO8WgHS79oCEdAuKWfTMJQcnV9lChoBkdAc4LwqRU3oGgHS79oCEdAuKWjYao/A3V9lChoBkdAc1jalDWsimgHS/poCEdAuKW00CRwInV9lChoBkdAcpzXGOuJUGgHS5JoCEdAuKW6fg75mHV9lChoBkdAcdt0se4kNWgHS55oCEdAuKW/PSlWO3V9lChoBkdAcW1D9fkWAWgHS6VoCEdAuKXYFC9h7XV9lChoBkdAcrNGmk30gGgHS7FoCEdAuKYOWTot+XV9lChoBkdAccg9IPK+z2gHS5JoCEdAuKYZmHxjKHV9lChoBkdAcoquqWC2+mgHS7RoCEdAuKYwyGi5/nV9lChoBkdAcQeDIRywOmgHS7doCEdAuKZdsLv1DnV9lChoBkdAcvBCv5gw5GgHS5poCEdAuKZnSYw7DHV9lChoBkdAcinn+AEt/WgHS85oCEdAuKZ5jAi3X3V9lChoBkdAciBEQXhwVGgHS7JoCEdAuKaNwkxASnV9lChoBkdAcKmrRjSXt2gHS4hoCEdAuKaQR02ca3V9lChoBkdAclXz/ZM+NmgHS6BoCEdAuKah29tdiXV9lChoBkdAcZCm0VrRB2gHS5poCEdAuKavssxwhnV9lChoBkdAcjZW/rSmZWgHS7doCEdAuKbEvXbudHV9lChoBkdAcwdHBDXvpmgHS9doCEdAuKbG5Zr57HV9lChoBkdAc9X4G2TgVGgHS8ZoCEdAuKbM3sHB13V9lChoBkdAcbviYLLIP2gHS7BoCEdAuKbOUA1ejXV9lChoBkdAcNnd7v5P/WgHS81oCEdAuKbdceKba3V9lChoBkdAcZT8stkFwGgHS7doCEdAuKb3zd1uBXV9lChoBkdAcusc4o7V8WgHS75oCEdAuKc4+9rXUnV9lChoBkdAcfiBkqc3EWgHS7ZoCEdAuKc3x0+1SnV9lChoBkdAcacezlcQiGgHS7RoCEdAuKdMJng5znV9lChoBkdAcsmqebutwWgHS5loCEdAuKdYdHUc43V9lChoBkdAcSlNJvo/zWgHS5toCEdAuKeCYnfEXXV9lChoBkdAcypKQaJhv2gHS8RoCEdAuKeUg4ffXXV9lChoBkdAcW6oNNJvpGgHS41oCEdAuKejBLwnY3V9lChoBkdAb5+P+XJHRWgHS6doCEdAuKeqm0mdAnV9lChoBkdAbw2NVinYQWgHS5JoCEdAuKeqMPz4DnV9lChoBkdAc7bS4vvjO2gHS7NoCEdAuKep6sySFHV9lChoBkdAcQDrSmZVn2gHS5FoCEdAuKewV32VV3V9lChoBkdAc8nozeoDPmgHS8toCEdAuKe8qUeMh3V9lChoBkdAcnJ0VJtix2gHS7toCEdAuKfxy0a6z3V9lChoBkdAc8KWeYlY2mgHS9FoCEdAuKf41aW5Y3V9lChoBkdAcmmLowEhaGgHS7ZoCEdAuKf7CO3lS3V9lChoBkdAcktFcY64lWgHS45oCEdAuKgss3AEdXV9lChoBkdAcq3SydFvymgHS9RoCEdAuKhFfWtlqnV9lChoBkdAcyzWOIZZS2gHS75oCEdAuKhnk4m1IHV9lChoBkdAcewuzhP0qmgHS6toCEdAuKhogPmPo3V9lChoBkdAc99cKPXCj2gHS9NoCEdAuKiIyZa3Z3V9lChoBkdAcqzOqvNeMWgHS59oCEdAuKim1jRUm3V9lChoBkdAb+vt65XlsGgHS6NoCEdAuKiuymhufnV9lChoBkdAcMgqfOD8L2gHS6loCEdAuKi4RBeHBXV9lChoBkdAcf9Ud7v5QGgHS7ZoCEdAuKi69ytFKHV9lChoBkdAcxvWGRFI/mgHS8xoCEdAuKjMsmOU+3V9lChoBkdAc8L2i+L3sWgHS9FoCEdAuKj2nCO3lXV9lChoBkdAcwcv6j323GgHS9ZoCEdAuKkMB3iaRnV9lChoBkdAcN5O/L1VYWgHS61oCEdAuKkWMGX5WXV9lChoBkdAc3PngYP5HmgHS7doCEdAuKkeWNWEK3V9lChoBkdAcw/SGJvYOGgHS95oCEdAuKkkmAskIHV9lChoBkdAcdDC2+fyw2gHS7loCEdAuKkqzXz19XV9lChoBkdAcVOVOKwY+GgHS5FoCEdAuKk1a5f+j3V9lChoBkdAceAF/QSi/WgHS4poCEdAuKlIa3qiXnV9lChoBkdAcoQTkyULUmgHS8hoCEdAuKluPLgXM3V9lChoBkdAbyWgam4y5GgHS5doCEdAuKmmU0Nz83VlLg=="
|
49 |
},
|
50 |
"ep_success_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
52 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
},
|
54 |
+
"_n_updates": 3680,
|
55 |
"observation_space": {
|
56 |
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
|
|
77 |
"_np_random": null
|
78 |
},
|
79 |
"n_envs": 16,
|
80 |
+
"n_steps": 1024,
|
81 |
"gamma": 0.999,
|
82 |
"gae_lambda": 0.98,
|
83 |
"ent_coef": 0.01,
|
84 |
"vf_coef": 0.5,
|
85 |
"max_grad_norm": 0.5,
|
86 |
"batch_size": 64,
|
87 |
+
"n_epochs": 20,
|
88 |
"clip_range": {
|
89 |
":type:": "<class 'function'>",
|
90 |
":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
ppo-LunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 87978
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:027cb729bbe74b4cc571045a7fd39b24d6898b0c183180780356a4ac751368fd
|
3 |
size 87978
|
ppo-LunarLander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43634
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:422e94cd4ea4672965423a4cf4883b8aa25b14e38800419d5ec4f9bb20f657c2
|
3 |
size 43634
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 292.42448813343486, "std_reward": 20.609792544838122, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-12-05T11:24:47.635591"}
|