File size: 6,961 Bytes
7d10df3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2393f6b
 
 
7d10df3
2393f6b
7d10df3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2393f6b
 
 
7d10df3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
---
tags:
- text-generation-inference
- phi3
- 4-bit precision
- AWQ
base_model:
- microsoft/Phi-3-mini-4k-instruct
---

# Phi 3 mini 4k instruct instruct with Key-Value-Cache enabled in ONNX AWQ (4-bit) format
- Model creator: [Microsoft](https://huggingface.co./microsoft)
- Original model: [Phi 3 mini 4k instruct](https://huggingface.co./microsoft/Phi-3-mini-4k-instruct)

<!-- description start -->
## Description

This repo contains the ONNX files of the ONNX conversion of Phi 3 mini 4k instruct instruct done by Esperanto Technologies.
The model is in the 4-bit format quantized with AWQ and has the KVC enabled.

### About AWQ

AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings.
More here: [AutoAWQ](https://github.com/casper-hansen/AutoAWQ)

<!-- description end -->

## How to download ONNX model and weight files

The easiest way to obtain the model is to clone this whole repo.
Alternatively you can download the files is using the `huggingface-hub` Python library.

```shell
pip3 install huggingface-hub>=0.17.1
```

Then you can download any individual model file to the current directory, at high speed, with a command like this:

```shell
huggingface-cli download Esperanto/phi3-mini-4k-instruct-kvc-AWQ-int4-onnx  --local-dir phi3-mini-4k-instruct-kvc-AWQ-int4-onnx  --local-dir-use-symlinks False
```

For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co./docs/huggingface_hub/guides/download#download-from-the-cli).

## How to run from Python code using ONNXRuntime

This model can easily be ran in a CPU using [ONNXRuntime](https://onnxruntime.ai/).

#### First install the packages

```bash
pip3 install onnx==1.16.1
pip3 install onnxruntime==1.17.1
```

#### Example code: generate text with this model

We define the loop with greedy decoding:
```python
import numpy as np
import onnxruntime
import onnx
from transformers import AutoTokenizer
def generate_text(model_path, prompt, tokenizer, max_gen_tokens, total_sequence, window, context):
    model = onnx.load(model_path)
    #we create the inputs for the first iteration
    input_tensor = tokenizer(prompt, return_tensors="pt")
    prompt_size = len(input_tensor['input_ids'][0])
    actual_input = input_tensor['input_ids']
    if prompt_size < window:
        actual_input = np.concatenate((tokenizer.bos_token_id*np.ones([1, window - prompt_size], dtype = 'int64'),
                                       actual_input), axis=1)
    if prompt_size + max_gen_tokens > total_sequence:
        print("ERROR: Longer total sequence is needed!")
        return
    first_attention = np.concatenate((np.zeros([1, total_sequence - window], dtype = 'int64'),
                                      np.ones((1, window), dtype = 'int64')), axis=1)
    max_gen_tokens += prompt_size #we need to generate on top of parsing the prompt
    inputs_names =[node.name for node in model.graph.input]
    output_names =[node.name for node in model.graph.output]
    n_heads = 32 #gqa-heads of the kvc
    inputs_dict = {}
    inputs_dict['input_ids'] = actual_input[:, :window].reshape(1, window).numpy()
    inputs_dict['attention_mask'] = first_attention
    index_pos = sum(first_attention[0])
    inputs_dict['position_ids'] = np.concatenate((np.zeros([1, total_sequence - index_pos], dtype = 'int64'), np.arange(index_pos, dtype = 'int64').reshape(1, index_pos)), axis=1)
    inputs_dict['tree_attention'] = np.triu(-65504*np.ones(total_sequence), k= 1).astype('float16').reshape(1, 1, total_sequence, total_sequence)
    for name in inputs_names:
        if name == 'input_ids' or name == 'attention_mask' or name == 'position_ids' or name == 'tree_attention': continue
        inputs_dict[name] = np.zeros([1, n_heads, context-window, 96], dtype="float16")
    index = 0
    new_token = np.array([10])
    next_index = window
    old_j = 0
    total_input = actual_input.numpy()
    rt_session = onnxruntime.InferenceSession(model_path)
    ## We run the inferences
    while next_index < max_gen_tokens:
        if new_token.any() == tokenizer.eos_token_id:
            break
        #inference
        output = rt_session.run(output_names, inputs_dict)
        outs_dictionary = {name: content for (name, content) in zip (output_names, output)}
        #we prepare the inputs for the next inference
        for name in inputs_names:
            if name == 'input_ids':
                old_j = next_index
                if next_index < prompt_size:
                    if prompt_size - next_index >= window: next_index += window
                    else: next_index = prompt_size 
                    j = next_index - window
                else:
                    next_index +=1
                    j = next_index - window
                    new_token = outs_dictionary['logits'].argmax(-1).reshape(1, window)
                    total_input = np.concatenate((total_input, new_token[: , -1:]), axis = 1)
                inputs_dict['input_ids']= total_input[:, j:next_index].reshape(1, window)
            elif name == 'attention_mask':
                inputs_dict['attention_mask'] = np.concatenate((np.zeros((1, total_sequence-next_index), dtype = 'int64'), np.ones((1, next_index), dtype = 'int64')), axis=1)
            elif name == 'position_ids':
                inputs_dict['position_ids'] = np.concatenate((np.zeros([1, total_sequence - next_index], dtype = 'int64'), np.arange(next_index, dtype = 'int64').reshape(1, next_index)), axis=1)
            elif name == 'tree_attention': continue
            else:
                old_name = name.replace("past_key_values", "present")
                inputs_dict[name] = outs_dictionary[old_name][:, :, next_index-old_j:context-window+(next_index - old_j), :]
    answer = tokenizer.decode(total_input[0], skip_special_tokens=True, clean_up_tokenization_spaces=False)
    return answer
```
We now run the inferences:

```python
tokenizer = AutoTokenizer.from_pretrained("Esperanto/phi3-mini-4k-instruct-kvc-AWQ-int4-onnx")
model_path = "phi3-mini-4k-instruct-kvc-AWQ-int4-onnx/model.onnx"
max_gen_tokens = 20    #number of tokens we want tog eneral
total_sequence = 128   #total sequence_length
context = 1024         #the context to extend the kvc
window = 16            #number of tokens we want to parse at the time
messages = [
    {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
    {"role": "user", "content": "Who are you?"},
]
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
generated = generate_text(model_path, prompt, tokenizer, max_gen_tokens, total_sequence, window, context)
print(generated)
```