|
import os |
|
from flask import Flask, request, jsonify |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
import yaml |
|
|
|
|
|
api_key = os.getenv('HF_API_KEY') |
|
model_path = os.getenv('MODEL_PATH') |
|
|
|
|
|
app = Flask(__name__) |
|
|
|
|
|
with open('config.yaml', 'r') as file: |
|
config = yaml.safe_load(file) |
|
|
|
|
|
def load_model(): |
|
tokenizer = AutoTokenizer.from_pretrained(model_path) |
|
model = AutoModelForCausalLM.from_pretrained(model_path) |
|
return model, tokenizer |
|
|
|
model, tokenizer = load_model() |
|
|
|
def generate_text(prompt): |
|
inputs = tokenizer(prompt, return_tensors="pt") |
|
outputs = model.generate(inputs['input_ids']) |
|
return tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
|
|
@app.route('/generate', methods=['POST']) |
|
def generate(): |
|
data = request.get_json() |
|
prompt = data.get('prompt') |
|
if prompt: |
|
response_text = generate_text(prompt) |
|
return jsonify({"response": response_text}) |
|
else: |
|
return jsonify({"error": "No prompt provided"}) |
|
|
|
if __name__ == '__main__': |
|
app.run(debug=True) |