--- library_name: transformers license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - image-classification - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: vit-weldclassifyv4 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9244604316546763 --- # vit-weldclassifyv4 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co./google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.3162 - Accuracy: 0.9245 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-------:|:----:|:---------------:|:--------:| | 0.8146 | 0.6410 | 100 | 0.7349 | 0.6835 | | 0.6048 | 1.2821 | 200 | 0.6821 | 0.6978 | | 0.4796 | 1.9231 | 300 | 0.4833 | 0.8129 | | 0.4532 | 2.5641 | 400 | 0.5380 | 0.8022 | | 0.1242 | 3.2051 | 500 | 0.3899 | 0.8741 | | 0.124 | 3.8462 | 600 | 0.5237 | 0.8273 | | 0.1239 | 4.4872 | 700 | 0.4221 | 0.8849 | | 0.0785 | 5.1282 | 800 | 0.3683 | 0.9137 | | 0.093 | 5.7692 | 900 | 0.6376 | 0.8597 | | 0.0056 | 6.4103 | 1000 | 0.3162 | 0.9245 | | 0.0472 | 7.0513 | 1100 | 0.5225 | 0.8885 | | 0.0234 | 7.6923 | 1200 | 0.6096 | 0.8597 | | 0.0354 | 8.3333 | 1300 | 0.5520 | 0.8777 | | 0.026 | 8.9744 | 1400 | 0.4938 | 0.8993 | | 0.002 | 9.6154 | 1500 | 0.4350 | 0.9173 | | 0.0021 | 10.2564 | 1600 | 0.4224 | 0.9173 | | 0.0016 | 10.8974 | 1700 | 0.3838 | 0.9281 | | 0.0014 | 11.5385 | 1800 | 0.3943 | 0.9281 | | 0.0013 | 12.1795 | 1900 | 0.4012 | 0.9281 | | 0.0012 | 12.8205 | 2000 | 0.4067 | 0.9281 | | 0.0011 | 13.4615 | 2100 | 0.4101 | 0.9281 | | 0.0011 | 14.1026 | 2200 | 0.4124 | 0.9281 | | 0.0012 | 14.7436 | 2300 | 0.4136 | 0.9281 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.5.0+cu121 - Datasets 3.1.0 - Tokenizers 0.19.1