--- library_name: transformers license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - image-classification - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: vit-weldclassifyv4 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.920863309352518 --- # vit-weldclassifyv4 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co./google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.3301 - Accuracy: 0.9209 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 0.8207 | 0.6410 | 100 | 1.0336 | 0.5647 | | 0.6506 | 1.2821 | 200 | 1.1982 | 0.5791 | | 0.5324 | 1.9231 | 300 | 0.6060 | 0.7770 | | 0.2486 | 2.5641 | 400 | 0.7294 | 0.7518 | | 0.1366 | 3.2051 | 500 | 0.4832 | 0.8417 | | 0.3124 | 3.8462 | 600 | 0.8676 | 0.7626 | | 0.0296 | 4.4872 | 700 | 0.4233 | 0.8885 | | 0.0723 | 5.1282 | 800 | 0.4470 | 0.8849 | | 0.0342 | 5.7692 | 900 | 0.3406 | 0.9173 | | 0.0055 | 6.4103 | 1000 | 0.3301 | 0.9209 | | 0.0048 | 7.0513 | 1100 | 0.3471 | 0.9173 | | 0.0036 | 7.6923 | 1200 | 0.3346 | 0.9137 | | 0.003 | 8.3333 | 1300 | 0.3498 | 0.9137 | | 0.003 | 8.9744 | 1400 | 0.3549 | 0.9101 | | 0.0027 | 9.6154 | 1500 | 0.3569 | 0.9137 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.5.0+cu121 - Datasets 3.1.0 - Tokenizers 0.19.1