chilly-magician
commited on
Commit
•
6a7f508
1
Parent(s):
fe21650
[add]: test parser script
Browse files- scripts/calculate_metrics.py +0 -0
- scripts/test_parser.py +148 -0
scripts/calculate_metrics.py
ADDED
File without changes
|
scripts/test_parser.py
ADDED
@@ -0,0 +1,148 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import json
|
3 |
+
import os
|
4 |
+
|
5 |
+
from typing import Optional, Tuple
|
6 |
+
from tqdm.auto import tqdm
|
7 |
+
|
8 |
+
import torch
|
9 |
+
|
10 |
+
from datasets import DatasetDict, load_dataset
|
11 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
12 |
+
|
13 |
+
def check_base_path(path: str) -> Optional[str]:
|
14 |
+
if path is not None:
|
15 |
+
base_path = os.path.basename(path)
|
16 |
+
if os.path.exists(base_path):
|
17 |
+
return path
|
18 |
+
else:
|
19 |
+
raise Exception(f'Path not found {base_path}')
|
20 |
+
return path
|
21 |
+
|
22 |
+
|
23 |
+
def parse_args():
|
24 |
+
DEFAULT_MODEL_ID = 'EmbeddingStudio/query-parser-falcon-7b-instruct'
|
25 |
+
DEFAULT_DATASET = 'EmbeddingStudio/query-parsing-instructions-falcon'
|
26 |
+
DEFAULT_SPLIT = 'test'
|
27 |
+
DEFAULT_INSTRUCTION_FIELD = 'text'
|
28 |
+
DEFAULT_RESPONSE_DELIMITER = '## Response:\n'
|
29 |
+
DEFAULT_CATEGORY_DELIMITER = '## Category:'
|
30 |
+
DEFAULT_OUTPUT_PATH = f'{DEFAULT_MODEL_ID.split("/")[-1]}-test.json'
|
31 |
+
|
32 |
+
parser = argparse.ArgumentParser(description='EmbeddingStudio script for testing Zero-Shot Search Query Parsers')
|
33 |
+
parser.add_argument("--model-id",
|
34 |
+
help=f"Huggingface model ID (default: {DEFAULT_MODEL_ID})",
|
35 |
+
default=DEFAULT_MODEL_ID,
|
36 |
+
type=str,
|
37 |
+
)
|
38 |
+
parser.add_argument("--dataset-name",
|
39 |
+
help=f"Huggingface dataset name which contains instructions (default: {DEFAULT_DATASET})",
|
40 |
+
default=DEFAULT_DATASET,
|
41 |
+
type=str,
|
42 |
+
)
|
43 |
+
parser.add_argument("--dataset-split",
|
44 |
+
help=f"Huggingface dataset split name (default: {DEFAULT_SPLIT})",
|
45 |
+
default=DEFAULT_SPLIT,
|
46 |
+
type=str,
|
47 |
+
)
|
48 |
+
parser.add_argument("--dataset-instructions-field",
|
49 |
+
help=f"Huggingface dataset field with instructions (default: {DEFAULT_INSTRUCTION_FIELD})",
|
50 |
+
default=DEFAULT_INSTRUCTION_FIELD,
|
51 |
+
type=str,
|
52 |
+
)
|
53 |
+
parser.add_argument("--instructions-response-delimiter",
|
54 |
+
help=f"Instruction response delimiter (default: {DEFAULT_RESPONSE_DELIMITER})",
|
55 |
+
default=DEFAULT_RESPONSE_DELIMITER,
|
56 |
+
type=str,
|
57 |
+
)
|
58 |
+
parser.add_argument("--instructions-category-delimiter",
|
59 |
+
help=f"Instruction category name delimiter (default: {DEFAULT_CATEGORY_DELIMITER})",
|
60 |
+
default=DEFAULT_CATEGORY_DELIMITER,
|
61 |
+
type=str,
|
62 |
+
)
|
63 |
+
|
64 |
+
parser.add_argument("--output",
|
65 |
+
help=f"JSON file with test results (default: {DEFAULT_OUTPUT_PATH})",
|
66 |
+
default=DEFAULT_OUTPUT_PATH,
|
67 |
+
type=check_base_path,
|
68 |
+
)
|
69 |
+
args = parser.parse_args()
|
70 |
+
return args
|
71 |
+
|
72 |
+
|
73 |
+
def load_model(model_id: str) -> Tuple[AutoTokenizer, AutoModelForCausalLM]:
|
74 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
75 |
+
model_id,
|
76 |
+
trust_remote_code=True,
|
77 |
+
add_prefix_space=True,
|
78 |
+
use_fast=False,
|
79 |
+
)
|
80 |
+
tokenizer.pad_token = tokenizer.eos_token
|
81 |
+
model = AutoModelForCausalLM.from_pretrained(model_id, device_map={"": 0})
|
82 |
+
return tokenizer, model
|
83 |
+
|
84 |
+
|
85 |
+
@torch.no_grad()
|
86 |
+
def predict(
|
87 |
+
tokenizer: AutoTokenizer,
|
88 |
+
model: AutoModelForCausalLM,
|
89 |
+
dataset: DatasetDict,
|
90 |
+
index: int,
|
91 |
+
field_name: str = 'text',
|
92 |
+
response_delimiter: str = '## Response:\n',
|
93 |
+
category_delimiter: str = '## Category: '
|
94 |
+
) -> Tuple[dict, dict, str]:
|
95 |
+
input_text = dataset[index][field_name].split(response_delimiter)[0] + response_delimiter
|
96 |
+
input_ids = tokenizer.encode(input_text, return_tensors='pt')
|
97 |
+
real = json.loads(dataset[index][field_name].split(response_delimiter)[-1])
|
98 |
+
category = dataset[index][field_name].split(category_delimiter)[-1].split('\n')[0]
|
99 |
+
|
100 |
+
# Generating text
|
101 |
+
output = model.generate(input_ids.to('cuda'),
|
102 |
+
max_new_tokens=1000,
|
103 |
+
do_sample=True,
|
104 |
+
temperature=0.05,
|
105 |
+
pad_token_id=50256
|
106 |
+
)
|
107 |
+
parsed = json.loads(tokenizer.decode(output[0], skip_special_tokens=True).split(response_delimiter)[-1])
|
108 |
+
|
109 |
+
return [parsed, real, category]
|
110 |
+
|
111 |
+
|
112 |
+
@torch.no_grad()
|
113 |
+
def test_model(model_id: str,
|
114 |
+
dataset_name: str,
|
115 |
+
split_name: str,
|
116 |
+
field_name: str,
|
117 |
+
response_delimiter: str,
|
118 |
+
category_delimiter: str,
|
119 |
+
output_path: str,
|
120 |
+
|
121 |
+
):
|
122 |
+
dataset = load_dataset(dataset_name, split=split_name)
|
123 |
+
tokenizer, model = load_model(model_id)
|
124 |
+
model.eval()
|
125 |
+
|
126 |
+
test_results = []
|
127 |
+
for index in tqdm(range(len(dataset[split_name]))):
|
128 |
+
try:
|
129 |
+
test_results.append(predict(tokenizer, model, dataset[split_name], index, field_name, response_delimiter, category_delimiter))
|
130 |
+
except Exception as e:
|
131 |
+
continue
|
132 |
+
|
133 |
+
with open(output_path, 'w') as f:
|
134 |
+
json.dump(test_results)
|
135 |
+
|
136 |
+
|
137 |
+
|
138 |
+
if __name__ == '__main__':
|
139 |
+
args = parse_args()
|
140 |
+
test_model(
|
141 |
+
args.model_id,
|
142 |
+
args.dataset_name,
|
143 |
+
args.dataset_split,
|
144 |
+
args.dataset_instructions_field,
|
145 |
+
args.instructions_response_delimiter,
|
146 |
+
args.instructions_category_delimiter,
|
147 |
+
args.output
|
148 |
+
)
|