--- library_name: transformers license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer metrics: - f1 - accuracy model-index: - name: bert-finetuned-advisor-feedback results: [] --- # bert-finetuned-advisor-feedback This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co./bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0577 - F1: 0.9377 - Roc Auc: 0.9605 - Accuracy: 0.8564 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:| | No log | 1.0 | 404 | 0.2224 | 0.4395 | 0.6424 | 0.0866 | | 0.2972 | 2.0 | 808 | 0.1361 | 0.8395 | 0.8720 | 0.5866 | | 0.1464 | 3.0 | 1212 | 0.0951 | 0.9056 | 0.9269 | 0.7599 | | 0.0841 | 4.0 | 1616 | 0.0770 | 0.9226 | 0.9472 | 0.8168 | | 0.0529 | 5.0 | 2020 | 0.0653 | 0.9344 | 0.9569 | 0.8540 | | 0.0529 | 6.0 | 2424 | 0.0603 | 0.9357 | 0.9565 | 0.8490 | | 0.0384 | 7.0 | 2828 | 0.0577 | 0.9377 | 0.9605 | 0.8564 | | 0.0323 | 8.0 | 3232 | 0.0569 | 0.9366 | 0.9579 | 0.8540 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 3.0.0 - Tokenizers 0.19.1