EricHallahan commited on
Commit
8a44d5a
1 Parent(s): d3d2956

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +12 -11
README.md CHANGED
@@ -18,19 +18,20 @@ GPT-J 6B is a transformer model trained using Ben Wang's [Mesh Transformer JAX](
18
 
19
  <figure>
20
 
21
- | Hyperparameter | Value |
22
- |----------------------|---------------|
23
- | \\(n_{parameters}\\) | 6,053,381,344 |
24
- | \\(n_{layers}\\) | 28&ast; |
25
- | \\(d_{model}\\) | 4,096 |
26
- | \\(d_{ff}\\) | 16,384 |
27
- | \\(n_{heads}\\) | 16 |
28
- | \\(d_{head}\\) | 256 |
29
- | \\(n_{ctx}\\) | 2,048 |
30
- | \\(n_{vocab}\\) | 50,257 (same tokenizer as GPT-2/3) |
31
  | Positional Encoding | [Rotary Position Embedding (RoPE)](https://arxiv.org/abs/2104.09864) |
32
  | RoPE Dimensions | [64](https://github.com/kingoflolz/mesh-transformer-jax/blob/f2aa66e0925de6593dcbb70e72399b97b4130482/mesh_transformer/layers.py#L223) |
33
- <figcaption><strong>&ast;</strong> Each layer consists of one feedforward block and one self attention block.</figcaption></figure>
 
34
 
35
  The model consists of 28 layers with a model dimension of 4096, and a feedforward dimension of 16384. The model
36
  dimension is split into 16 heads, each with a dimension of 256. Rotary Position Embedding (RoPE) is applied to 64
 
18
 
19
  <figure>
20
 
21
+ | Hyperparameter | Value |
22
+ |----------------------|------------|
23
+ | \\(n_{parameters}\\) | 6053381344 |
24
+ | \\(n_{layers}\\) | 28&ast; |
25
+ | \\(d_{model}\\) | 4096 |
26
+ | \\(d_{ff}\\) | 16384 |
27
+ | \\(n_{heads}\\) | 16 |
28
+ | \\(d_{head}\\) | 256 |
29
+ | \\(n_{ctx}\\) | 2048 |
30
+ | \\(n_{vocab}\\) | 50257/50400&dagger; (same tokenizer as GPT-2/3) |
31
  | Positional Encoding | [Rotary Position Embedding (RoPE)](https://arxiv.org/abs/2104.09864) |
32
  | RoPE Dimensions | [64](https://github.com/kingoflolz/mesh-transformer-jax/blob/f2aa66e0925de6593dcbb70e72399b97b4130482/mesh_transformer/layers.py#L223) |
33
+ <figcaption><p><strong>&ast;</strong> Each layer consists of one feedforward block and one self attention block.</p>
34
+ <p><strong>&dagger;</strong> Although the embedding matrix has a size of 50400, only 50257 entries are used by the GPT-2 tokenizer.</p></figcaption></figure>
35
 
36
  The model consists of 28 layers with a model dimension of 4096, and a feedforward dimension of 16384. The model
37
  dimension is split into 16 heads, each with a dimension of 256. Rotary Position Embedding (RoPE) is applied to 64