--- library_name: peft license: mit base_model: microsoft/deberta-v3-small tags: - generated_from_trainer model-index: - name: zealous-fowl-600 results: [] --- # zealous-fowl-600 This model is a fine-tuned version of [microsoft/deberta-v3-small](https://huggingface.co./microsoft/deberta-v3-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6860 - Hamming Loss: 0.369 - Zero One Loss: 1.0 - Jaccard Score: 0.9302 - Hamming Loss Optimised: 0.1123 - Hamming Loss Threshold: 0.6927 - Zero One Loss Optimised: 0.9613 - Zero One Loss Threshold: 0.5584 - Jaccard Score Optimised: 0.8878 - Jaccard Score Threshold: 0.2889 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.3368760240891046e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 2024 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9127257778280685,0.9582541835167471) and epsilon=1e-07 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Hamming Loss | Zero One Loss | Jaccard Score | Hamming Loss Optimised | Hamming Loss Threshold | Zero One Loss Optimised | Zero One Loss Threshold | Jaccard Score Optimised | Jaccard Score Threshold | |:-------------:|:-----:|:----:|:---------------:|:------------:|:-------------:|:-------------:|:----------------------:|:----------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:-----------------------:| | No log | 1.0 | 400 | 0.6867 | 0.3756 | 1.0 | 0.9288 | 0.1123 | 0.6927 | 0.9613 | 0.5584 | 0.8878 | 0.2889 | | 0.6886 | 2.0 | 800 | 0.6863 | 0.3708 | 1.0 | 0.9300 | 0.1123 | 0.6927 | 0.9613 | 0.5584 | 0.8878 | 0.2889 | | 0.6885 | 3.0 | 1200 | 0.6861 | 0.3693 | 1.0 | 0.9305 | 0.1123 | 0.6927 | 0.9613 | 0.5584 | 0.8878 | 0.2889 | | 0.6876 | 4.0 | 1600 | 0.6860 | 0.369 | 1.0 | 0.9302 | 0.1123 | 0.6927 | 0.9613 | 0.5584 | 0.8878 | 0.2889 | ### Framework versions - PEFT 0.13.2 - Transformers 4.48.0.dev0 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.21.0