--- library_name: peft license: mit base_model: microsoft/deberta-v3-small tags: - generated_from_trainer model-index: - name: valuable-auk-490 results: [] --- # valuable-auk-490 This model is a fine-tuned version of [microsoft/deberta-v3-small](https://huggingface.co./microsoft/deberta-v3-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4671 - Hamming Loss: 0.1123 - Zero One Loss: 1.0 - Jaccard Score: 1.0 - Hamming Loss Optimised: 0.1123 - Hamming Loss Threshold: 0.5944 - Zero One Loss Optimised: 0.7662 - Zero One Loss Threshold: 0.4039 - Jaccard Score Optimised: 0.7638 - Jaccard Score Threshold: 0.4056 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6.612534950619908e-06 - train_batch_size: 4 - eval_batch_size: 4 - seed: 2024 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Hamming Loss | Zero One Loss | Jaccard Score | Hamming Loss Optimised | Hamming Loss Threshold | Zero One Loss Optimised | Zero One Loss Threshold | Jaccard Score Optimised | Jaccard Score Threshold | |:-------------:|:-----:|:----:|:---------------:|:------------:|:-------------:|:-------------:|:----------------------:|:----------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:-----------------------:| | 0.6856 | 1.0 | 800 | 0.6690 | 0.3683 | 1.0 | 0.9304 | 0.1123 | 0.6927 | 0.9613 | 0.5584 | 0.8878 | 0.2889 | | 0.5765 | 2.0 | 1600 | 0.5081 | 0.1123 | 1.0 | 1.0 | 0.1123 | 0.5944 | 1.0 | 0.9000 | 0.8559 | 0.4056 | | 0.5242 | 3.0 | 2400 | 0.4754 | 0.1123 | 1.0 | 1.0 | 0.1123 | 0.5944 | 0.7662 | 0.4143 | 0.7638 | 0.4124 | | 0.4923 | 4.0 | 3200 | 0.4671 | 0.1123 | 1.0 | 1.0 | 0.1123 | 0.5944 | 0.7662 | 0.4039 | 0.7638 | 0.4056 | ### Framework versions - PEFT 0.13.2 - Transformers 4.47.0 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.21.0