--- library_name: peft license: apache-2.0 base_model: google-bert/bert-base-cased tags: - generated_from_trainer model-index: - name: grandiose-horse-172 results: [] --- # grandiose-horse-172 This model is a fine-tuned version of [google-bert/bert-base-cased](https://huggingface.co./google-bert/bert-base-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6509 - Hamming Loss: 0.3414 - Zero One Loss: 1.0 - Jaccard Score: 0.8678 - Hamming Loss Optimised: 0.1121 - Hamming Loss Threshold: 0.7504 - Zero One Loss Optimised: 0.8812 - Zero One Loss Threshold: 0.6730 - Jaccard Score Optimised: 0.8449 - Jaccard Score Threshold: 0.6539 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.510606094120106e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 2024 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Hamming Loss | Zero One Loss | Jaccard Score | Hamming Loss Optimised | Hamming Loss Threshold | Zero One Loss Optimised | Zero One Loss Threshold | Jaccard Score Optimised | Jaccard Score Threshold | |:-------------:|:-----:|:----:|:---------------:|:------------:|:-------------:|:-------------:|:----------------------:|:----------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:-----------------------:| | No log | 1.0 | 100 | 0.7202 | 0.4325 | 1.0 | 0.8586 | 0.1123 | 0.7924 | 0.8712 | 0.7112 | 0.8203 | 0.5766 | | No log | 2.0 | 200 | 0.6922 | 0.3761 | 1.0 | 0.8520 | 0.1123 | 0.7829 | 0.8812 | 0.6982 | 0.8546 | 0.5904 | | No log | 3.0 | 300 | 0.6696 | 0.349 | 1.0 | 0.8606 | 0.1123 | 0.7641 | 0.885 | 0.6857 | 0.8436 | 0.6634 | | No log | 4.0 | 400 | 0.6555 | 0.3432 | 1.0 | 0.8662 | 0.1121 | 0.7518 | 0.8825 | 0.6757 | 0.8455 | 0.6604 | | 0.6931 | 5.0 | 500 | 0.6509 | 0.3414 | 1.0 | 0.8678 | 0.1121 | 0.7504 | 0.8812 | 0.6730 | 0.8449 | 0.6539 | ### Framework versions - PEFT 0.13.2 - Transformers 4.47.0 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.21.0