File size: 2,865 Bytes
6bf9a06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---

library_name: peft
license: apache-2.0
base_model: answerdotai/ModernBERT-base
tags:
- generated_from_trainer
model-index:
- name: debonair-bear-744
  results: []
---


<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# debonair-bear-744

This model is a fine-tuned version of [answerdotai/ModernBERT-base](https://huggingface.co./answerdotai/ModernBERT-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2373
- Hamming Loss: 0.0854
- Zero One Loss: 0.7175
- Jaccard Score: 0.7075
- Hamming Loss Optimised: 0.0846
- Hamming Loss Threshold: 0.4663
- Zero One Loss Optimised: 0.6487
- Zero One Loss Threshold: 0.3162
- Jaccard Score Optimised: 0.5542
- Jaccard Score Threshold: 0.1769

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 8.857809698679913e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 2024
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.8813380147543269,0.8027403115380221) and epsilon=1e-07 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3

### Training results

| Training Loss | Epoch | Step | Validation Loss | Hamming Loss | Zero One Loss | Jaccard Score | Hamming Loss Optimised | Hamming Loss Threshold | Zero One Loss Optimised | Zero One Loss Threshold | Jaccard Score Optimised | Jaccard Score Threshold |
|:-------------:|:-----:|:----:|:---------------:|:------------:|:-------------:|:-------------:|:----------------------:|:----------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:-----------------------:|
| No log        | 1.0   | 100  | 0.3191          | 0.1116       | 0.9938        | 0.9938        | 0.1024                 | 0.3004                 | 0.78                    | 0.2247                  | 0.7428                  | 0.1619                  |
| No log        | 2.0   | 200  | 0.2554          | 0.0899       | 0.765         | 0.7562        | 0.088                  | 0.4274                 | 0.6825                  | 0.2889                  | 0.5940                  | 0.1800                  |
| No log        | 3.0   | 300  | 0.2373          | 0.0854       | 0.7175        | 0.7075        | 0.0846                 | 0.4663                 | 0.6487                  | 0.3162                  | 0.5542                  | 0.1769                  |


### Framework versions

- PEFT 0.13.2
- Transformers 4.48.0.dev0
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.21.0