--- library_name: transformers license: mit base_model: FacebookAI/roberta-base tags: - generated_from_trainer model-index: - name: dapper-mouse-804 results: [] --- # dapper-mouse-804 This model is a fine-tuned version of [FacebookAI/roberta-base](https://huggingface.co./FacebookAI/roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2533 - Hamming Loss: 0.0804 - Zero One Loss: 0.6875 - Jaccard Score: 0.6763 - Hamming Loss Optimised: 0.0741 - Hamming Loss Threshold: 0.2889 - Zero One Loss Optimised: 0.595 - Zero One Loss Threshold: 0.2700 - Jaccard Score Optimised: 0.5085 - Jaccard Score Threshold: 0.2226 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.4283208635614441e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 2024 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Hamming Loss | Zero One Loss | Jaccard Score | Hamming Loss Optimised | Hamming Loss Threshold | Zero One Loss Optimised | Zero One Loss Threshold | Jaccard Score Optimised | Jaccard Score Threshold | |:-------------:|:-----:|:----:|:---------------:|:------------:|:-------------:|:-------------:|:----------------------:|:----------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:-----------------------:| | No log | 1.0 | 100 | 0.2914 | 0.0932 | 0.8125 | 0.81 | 0.0931 | 0.5944 | 0.6600 | 0.1986 | 0.5717 | 0.1911 | | No log | 2.0 | 200 | 0.2533 | 0.0804 | 0.6875 | 0.6763 | 0.0741 | 0.2889 | 0.595 | 0.2700 | 0.5085 | 0.2226 | ### Framework versions - Transformers 4.47.0 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.21.0