--- library_name: transformers license: apache-2.0 base_model: answerdotai/ModernBERT-base tags: - generated_from_trainer model-index: - name: bright-loon-253 results: [] --- # bright-loon-253 This model is a fine-tuned version of [answerdotai/ModernBERT-base](https://huggingface.co./answerdotai/ModernBERT-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1606 - Hamming Loss: 0.0575 - Zero One Loss: 0.3938 - Jaccard Score: 0.3426 - Hamming Loss Optimised: 0.056 - Hamming Loss Threshold: 0.7152 - Zero One Loss Optimised: 0.3962 - Zero One Loss Threshold: 0.4832 - Jaccard Score Optimised: 0.3179 - Jaccard Score Threshold: 0.2879 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4.6017800734322744e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 2024 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9392111443474531,0.8944286688071013) and epsilon=1e-07 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Hamming Loss | Zero One Loss | Jaccard Score | Hamming Loss Optimised | Hamming Loss Threshold | Zero One Loss Optimised | Zero One Loss Threshold | Jaccard Score Optimised | Jaccard Score Threshold | |:-------------:|:-----:|:----:|:---------------:|:------------:|:-------------:|:-------------:|:----------------------:|:----------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:-----------------------:| | No log | 1.0 | 100 | 0.1583 | 0.0599 | 0.4775 | 0.4292 | 0.0594 | 0.5609 | 0.4425 | 0.3912 | 0.3408 | 0.2948 | | No log | 2.0 | 200 | 0.1515 | 0.0556 | 0.4075 | 0.3553 | 0.0566 | 0.7821 | 0.4 | 0.4285 | 0.3200 | 0.2934 | | No log | 3.0 | 300 | 0.1606 | 0.0575 | 0.3938 | 0.3426 | 0.056 | 0.7152 | 0.3962 | 0.4832 | 0.3179 | 0.2879 | ### Framework versions - Transformers 4.48.0.dev0 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.21.0