File size: 2,915 Bytes
f11dd16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---

library_name: transformers
license: apache-2.0
base_model: answerdotai/ModernBERT-base
tags:
- generated_from_trainer
model-index:
- name: bright-loon-253
  results: []
---


<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bright-loon-253

This model is a fine-tuned version of [answerdotai/ModernBERT-base](https://huggingface.co./answerdotai/ModernBERT-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1606
- Hamming Loss: 0.0575
- Zero One Loss: 0.3938
- Jaccard Score: 0.3426
- Hamming Loss Optimised: 0.056
- Hamming Loss Threshold: 0.7152
- Zero One Loss Optimised: 0.3962
- Zero One Loss Threshold: 0.4832
- Jaccard Score Optimised: 0.3179
- Jaccard Score Threshold: 0.2879

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 4.6017800734322744e-05

- train_batch_size: 32

- eval_batch_size: 32

- seed: 2024

- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9392111443474531,0.8944286688071013) and epsilon=1e-07 and optimizer_args=No additional optimizer arguments

- lr_scheduler_type: linear

- num_epochs: 3

### Training results

| Training Loss | Epoch | Step | Validation Loss | Hamming Loss | Zero One Loss | Jaccard Score | Hamming Loss Optimised | Hamming Loss Threshold | Zero One Loss Optimised | Zero One Loss Threshold | Jaccard Score Optimised | Jaccard Score Threshold |
|:-------------:|:-----:|:----:|:---------------:|:------------:|:-------------:|:-------------:|:----------------------:|:----------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:-----------------------:|
| No log        | 1.0   | 100  | 0.1583          | 0.0599       | 0.4775        | 0.4292        | 0.0594                 | 0.5609                 | 0.4425                  | 0.3912                  | 0.3408                  | 0.2948                  |
| No log        | 2.0   | 200  | 0.1515          | 0.0556       | 0.4075        | 0.3553        | 0.0566                 | 0.7821                 | 0.4                     | 0.4285                  | 0.3200                  | 0.2934                  |
| No log        | 3.0   | 300  | 0.1606          | 0.0575       | 0.3938        | 0.3426        | 0.056                  | 0.7152                 | 0.3962                  | 0.4832                  | 0.3179                  | 0.2879                  |


### Framework versions

- Transformers 4.48.0.dev0
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.21.0