Eempostor commited on
Commit
a68a271
1 Parent(s): 1011715

Upload pipeline.py

Browse files
Files changed (1) hide show
  1. lib/pipeline.py +773 -0
lib/pipeline.py ADDED
@@ -0,0 +1,773 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import sys
3
+ import gc
4
+ import traceback
5
+ import logging
6
+
7
+ logger = logging.getLogger(__name__)
8
+
9
+ from functools import lru_cache
10
+ from time import time as ttime
11
+ from torch import Tensor
12
+ import faiss
13
+ import librosa
14
+ import numpy as np
15
+ import parselmouth
16
+ import pyworld
17
+ import torch.nn.functional as F
18
+ from scipy import signal
19
+ from tqdm import tqdm
20
+
21
+ import random
22
+ now_dir = os.getcwd()
23
+ sys.path.append(now_dir)
24
+ import re
25
+ from functools import partial
26
+ bh, ah = signal.butter(N=5, Wn=48, btype="high", fs=16000)
27
+
28
+ input_audio_path2wav = {}
29
+ import torchcrepe # Fork Feature. Crepe algo for training and preprocess
30
+ from torchfcpe import spawn_bundled_infer_model
31
+ import torch
32
+ from lib.infer_libs.rmvpe import RMVPE
33
+ from lib.infer_libs.fcpe import FCPE
34
+
35
+ @lru_cache
36
+ def cache_harvest_f0(input_audio_path, fs, f0max, f0min, frame_period):
37
+ audio = input_audio_path2wav[input_audio_path]
38
+ f0, t = pyworld.harvest(
39
+ audio,
40
+ fs=fs,
41
+ f0_ceil=f0max,
42
+ f0_floor=f0min,
43
+ frame_period=frame_period,
44
+ )
45
+ f0 = pyworld.stonemask(audio, f0, t, fs)
46
+ return f0
47
+
48
+
49
+ def change_rms(data1, sr1, data2, sr2, rate): # 1是输入音频,2是输出音频,rate是2的占比
50
+ # print(data1.max(),data2.max())
51
+ rms1 = librosa.feature.rms(
52
+ y=data1, frame_length=sr1 // 2 * 2, hop_length=sr1 // 2
53
+ ) # 每半秒一个点
54
+ rms2 = librosa.feature.rms(y=data2, frame_length=sr2 // 2 * 2, hop_length=sr2 // 2)
55
+ rms1 = torch.from_numpy(rms1)
56
+ rms1 = F.interpolate(
57
+ rms1.unsqueeze(0), size=data2.shape[0], mode="linear"
58
+ ).squeeze()
59
+ rms2 = torch.from_numpy(rms2)
60
+ rms2 = F.interpolate(
61
+ rms2.unsqueeze(0), size=data2.shape[0], mode="linear"
62
+ ).squeeze()
63
+ rms2 = torch.max(rms2, torch.zeros_like(rms2) + 1e-6)
64
+ data2 *= (
65
+ torch.pow(rms1, torch.tensor(1 - rate))
66
+ * torch.pow(rms2, torch.tensor(rate - 1))
67
+ ).numpy()
68
+ return data2
69
+
70
+
71
+ class Pipeline(object):
72
+ def __init__(self, tgt_sr, config):
73
+ self.x_pad, self.x_query, self.x_center, self.x_max, self.is_half = (
74
+ config.x_pad,
75
+ config.x_query,
76
+ config.x_center,
77
+ config.x_max,
78
+ config.is_half,
79
+ )
80
+ self.sr = 16000 # hubert输入采样率
81
+ self.window = 160 # 每帧点数
82
+ self.t_pad = self.sr * self.x_pad # 每条前后pad时间
83
+ self.t_pad_tgt = tgt_sr * self.x_pad
84
+ self.t_pad2 = self.t_pad * 2
85
+ self.t_query = self.sr * self.x_query # 查询切点前后查询时间
86
+ self.t_center = self.sr * self.x_center # 查询切点位置
87
+ self.t_max = self.sr * self.x_max # 免查询时长阈值
88
+ self.device = config.device
89
+ self.model_rmvpe = RMVPE(os.environ["rmvpe_model_path"], is_half=self.is_half, device=self.device)
90
+
91
+ self.note_dict = [
92
+ 65.41, 69.30, 73.42, 77.78, 82.41, 87.31,
93
+ 92.50, 98.00, 103.83, 110.00, 116.54, 123.47,
94
+ 130.81, 138.59, 146.83, 155.56, 164.81, 174.61,
95
+ 185.00, 196.00, 207.65, 220.00, 233.08, 246.94,
96
+ 261.63, 277.18, 293.66, 311.13, 329.63, 349.23,
97
+ 369.99, 392.00, 415.30, 440.00, 466.16, 493.88,
98
+ 523.25, 554.37, 587.33, 622.25, 659.25, 698.46,
99
+ 739.99, 783.99, 830.61, 880.00, 932.33, 987.77,
100
+ 1046.50, 1108.73, 1174.66, 1244.51, 1318.51, 1396.91,
101
+ 1479.98, 1567.98, 1661.22, 1760.00, 1864.66, 1975.53,
102
+ 2093.00, 2217.46, 2349.32, 2489.02, 2637.02, 2793.83,
103
+ 2959.96, 3135.96, 3322.44, 3520.00, 3729.31, 3951.07
104
+ ]
105
+
106
+ # Fork Feature: Get the best torch device to use for f0 algorithms that require a torch device. Will return the type (torch.device)
107
+ def get_optimal_torch_device(self, index: int = 0) -> torch.device:
108
+ if torch.cuda.is_available():
109
+ return torch.device(
110
+ f"cuda:{index % torch.cuda.device_count()}"
111
+ ) # Very fast
112
+ elif torch.backends.mps.is_available():
113
+ return torch.device("mps")
114
+ return torch.device("cpu")
115
+
116
+ # Fork Feature: Compute f0 with the crepe method
117
+ def get_f0_crepe_computation(
118
+ self,
119
+ x,
120
+ f0_min,
121
+ f0_max,
122
+ p_len,
123
+ *args, # 512 before. Hop length changes the speed that the voice jumps to a different dramatic pitch. Lower hop lengths means more pitch accuracy but longer inference time.
124
+ **kwargs, # Either use crepe-tiny "tiny" or crepe "full". Default is full
125
+ ):
126
+ x = x.astype(
127
+ np.float32
128
+ ) # fixes the F.conv2D exception. We needed to convert double to float.
129
+ x /= np.quantile(np.abs(x), 0.999)
130
+ torch_device = self.get_optimal_torch_device()
131
+ audio = torch.from_numpy(x).to(torch_device, copy=True)
132
+ audio = torch.unsqueeze(audio, dim=0)
133
+ if audio.ndim == 2 and audio.shape[0] > 1:
134
+ audio = torch.mean(audio, dim=0, keepdim=True).detach()
135
+ audio = audio.detach()
136
+ hop_length = kwargs.get('crepe_hop_length', 160)
137
+ model = kwargs.get('model', 'full')
138
+ print("Initiating prediction with a crepe_hop_length of: " + str(hop_length))
139
+ pitch: Tensor = torchcrepe.predict(
140
+ audio,
141
+ self.sr,
142
+ hop_length,
143
+ f0_min,
144
+ f0_max,
145
+ model,
146
+ batch_size=hop_length * 2,
147
+ device=torch_device,
148
+ pad=True,
149
+ )
150
+ p_len = p_len or x.shape[0] // hop_length
151
+ # Resize the pitch for final f0
152
+ source = np.array(pitch.squeeze(0).cpu().float().numpy())
153
+ source[source < 0.001] = np.nan
154
+ target = np.interp(
155
+ np.arange(0, len(source) * p_len, len(source)) / p_len,
156
+ np.arange(0, len(source)),
157
+ source,
158
+ )
159
+ f0 = np.nan_to_num(target)
160
+ return f0 # Resized f0
161
+
162
+ def get_f0_official_crepe_computation(
163
+ self,
164
+ x,
165
+ f0_min,
166
+ f0_max,
167
+ *args,
168
+ **kwargs
169
+ ):
170
+ # Pick a batch size that doesn't cause memory errors on your gpu
171
+ batch_size = 512
172
+ # Compute pitch using first gpu
173
+ audio = torch.tensor(np.copy(x))[None].float()
174
+ model = kwargs.get('model', 'full')
175
+ f0, pd = torchcrepe.predict(
176
+ audio,
177
+ self.sr,
178
+ self.window,
179
+ f0_min,
180
+ f0_max,
181
+ model,
182
+ batch_size=batch_size,
183
+ device=self.device,
184
+ return_periodicity=True,
185
+ )
186
+ pd = torchcrepe.filter.median(pd, 3)
187
+ f0 = torchcrepe.filter.mean(f0, 3)
188
+ f0[pd < 0.1] = 0
189
+ f0 = f0[0].cpu().numpy()
190
+ return f0
191
+
192
+ # Fork Feature: Compute pYIN f0 method
193
+ def get_f0_pyin_computation(self, x, f0_min, f0_max):
194
+ y, sr = librosa.load(x, sr=self.sr, mono=True)
195
+ f0, _, _ = librosa.pyin(y, fmin=f0_min, fmax=f0_max, sr=self.sr)
196
+ f0 = f0[1:] # Get rid of extra first frame
197
+ return f0
198
+
199
+ def get_rmvpe(self, x, *args, **kwargs):
200
+ if not hasattr(self, "model_rmvpe"):
201
+ from lib.infer.infer_libs.rmvpe import RMVPE
202
+
203
+ logger.info(
204
+ f"Loading rmvpe model, {os.environ['rmvpe_model_path']}"
205
+ )
206
+ self.model_rmvpe = RMVPE(
207
+ os.environ["rmvpe_model_path"],
208
+ is_half=self.is_half,
209
+ device=self.device,
210
+ )
211
+ f0 = self.model_rmvpe.infer_from_audio(x, thred=0.03)
212
+
213
+ if "privateuseone" in str(self.device): # clean ortruntime memory
214
+ del self.model_rmvpe.model
215
+ del self.model_rmvpe
216
+ logger.info("Cleaning ortruntime memory")
217
+
218
+ return f0
219
+
220
+
221
+ def get_pitch_dependant_rmvpe(self, x, f0_min=1, f0_max=40000, *args, **kwargs):
222
+ if not hasattr(self, "model_rmvpe"):
223
+ from lib.infer.infer_libs.rmvpe import RMVPE
224
+
225
+ logger.info(
226
+ f"Loading rmvpe model, {os.environ['rmvpe_model_path']}"
227
+ )
228
+ self.model_rmvpe = RMVPE(
229
+ os.environ["rmvpe_model_path"],
230
+ is_half=self.is_half,
231
+ device=self.device,
232
+ )
233
+ f0 = self.model_rmvpe.infer_from_audio_with_pitch(x, thred=0.03, f0_min=f0_min, f0_max=f0_max)
234
+ if "privateuseone" in str(self.device): # clean ortruntime memory
235
+ del self.model_rmvpe.model
236
+ del self.model_rmvpe
237
+ logger.info("Cleaning ortruntime memory")
238
+
239
+ return f0
240
+
241
+ def get_fcpe(self, x, f0_min, f0_max, p_len, *args, **kwargs):
242
+ self.model_fcpe = FCPE(os.environ["fcpe_model_path"], f0_min=f0_min, f0_max=f0_max, dtype=torch.float32, device=self.device, sampling_rate=self.sr, threshold=0.03)
243
+ f0 = self.model_fcpe.compute_f0(x, p_len=p_len)
244
+ del self.model_fcpe
245
+ gc.collect()
246
+ return f0
247
+
248
+ def get_torchfcpe(self, x, sr, f0_min, f0_max, p_len, *args, **kwargs):
249
+ self.model_torchfcpe = spawn_bundled_infer_model(device=self.device)
250
+ f0 = self.model_torchfcpe.infer(
251
+ torch.from_numpy(x).float().unsqueeze(0).unsqueeze(-1).to(self.device),
252
+ sr=sr,
253
+ decoder_mode="local_argmax",
254
+ threshold=0.03,
255
+ f0_min=f0_min,
256
+ f0_max=f0_max,
257
+ output_interp_target_length=p_len
258
+ )
259
+ return f0.squeeze().cpu().numpy()
260
+
261
+ def autotune_f0(self, f0):
262
+ autotuned_f0 = []
263
+ for freq in f0:
264
+ closest_notes = [x for x in self.note_dict if abs(x - freq) == min(abs(n - freq) for n in self.note_dict)]
265
+ autotuned_f0.append(random.choice(closest_notes))
266
+ return np.array(autotuned_f0, np.float64)
267
+
268
+
269
+ # Fork Feature: Acquire median hybrid f0 estimation calculation
270
+ def get_f0_hybrid_computation(
271
+ self,
272
+ methods_str,
273
+ input_audio_path,
274
+ x,
275
+ f0_min,
276
+ f0_max,
277
+ p_len,
278
+ filter_radius,
279
+ crepe_hop_length,
280
+ time_step,
281
+ ):
282
+ # Get various f0 methods from input to use in the computation stack
283
+ methods_str = re.search('hybrid\[(.+)\]', methods_str)
284
+ if methods_str: # Ensure a match was found
285
+ methods = [method.strip() for method in methods_str.group(1).split('+')]
286
+ f0_computation_stack = []
287
+
288
+ print("Calculating f0 pitch estimations for methods: %s" % str(methods))
289
+ x = x.astype(np.float32)
290
+ x /= np.quantile(np.abs(x), 0.999)
291
+ # Get f0 calculations for all methods specified
292
+ for method in methods:
293
+ f0 = None
294
+ if method == "pm":
295
+ f0 = (
296
+ parselmouth.Sound(x, self.sr)
297
+ .to_pitch_ac(
298
+ time_step=time_step / 1000,
299
+ voicing_threshold=0.6,
300
+ pitch_floor=f0_min,
301
+ pitch_ceiling=f0_max,
302
+ )
303
+ .selected_array["frequency"]
304
+ )
305
+ pad_size = (p_len - len(f0) + 1) // 2
306
+ if pad_size > 0 or p_len - len(f0) - pad_size > 0:
307
+ f0 = np.pad(
308
+ f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant"
309
+ )
310
+ elif method == "crepe":
311
+ f0 = self.get_f0_official_crepe_computation(x, f0_min, f0_max, model="full")
312
+ f0 = f0[1:]
313
+ elif method == "crepe-tiny":
314
+ f0 = self.get_f0_official_crepe_computation(x, f0_min, f0_max, model="tiny")
315
+ f0 = f0[1:] # Get rid of extra first frame
316
+ elif method == "mangio-crepe":
317
+ f0 = self.get_f0_crepe_computation(
318
+ x, f0_min, f0_max, p_len, crepe_hop_length=crepe_hop_length
319
+ )
320
+ elif method == "mangio-crepe-tiny":
321
+ f0 = self.get_f0_crepe_computation(
322
+ x, f0_min, f0_max, p_len, crepe_hop_length=crepe_hop_length, model="tiny"
323
+ )
324
+ elif method == "harvest":
325
+ input_audio_path2wav[input_audio_path] = x.astype(np.double)
326
+ f0 = cache_harvest_f0(input_audio_path, self.sr, f0_max, f0_min, 10)
327
+ if filter_radius > 2:
328
+ f0 = signal.medfilt(f0, 3)
329
+ elif method == "dio":
330
+ f0, t = pyworld.dio(
331
+ x.astype(np.double),
332
+ fs=self.sr,
333
+ f0_ceil=f0_max,
334
+ f0_floor=f0_min,
335
+ frame_period=10,
336
+ )
337
+ f0 = pyworld.stonemask(x.astype(np.double), f0, t, self.sr)
338
+ f0 = signal.medfilt(f0, 3)
339
+ f0 = f0[1:]
340
+ elif method == "rmvpe":
341
+ f0 = self.get_rmvpe(x)
342
+ f0 = f0[1:]
343
+ elif method == "fcpe_legacy":
344
+ f0 = self.get_fcpe(x, f0_min=f0_min, f0_max=f0_max, p_len=p_len)
345
+ elif method == "fcpe":
346
+ f0 = self.get_torchfcpe(x, self.sr, f0_min, f0_max, p_len)
347
+ elif method == "pyin":
348
+ f0 = self.get_f0_pyin_computation(input_audio_path, f0_min, f0_max)
349
+ # Push method to the stack
350
+ f0_computation_stack.append(f0)
351
+
352
+ for fc in f0_computation_stack:
353
+ print(len(fc))
354
+
355
+ print("Calculating hybrid median f0 from the stack of: %s" % str(methods))
356
+ f0_median_hybrid = None
357
+ if len(f0_computation_stack) == 1:
358
+ f0_median_hybrid = f0_computation_stack[0]
359
+ else:
360
+ f0_median_hybrid = np.nanmedian(f0_computation_stack, axis=0)
361
+ return f0_median_hybrid
362
+
363
+ def get_f0(
364
+ self,
365
+ input_audio_path,
366
+ x,
367
+ p_len,
368
+ f0_up_key,
369
+ f0_method,
370
+ filter_radius,
371
+ crepe_hop_length,
372
+ f0_autotune,
373
+ inp_f0=None,
374
+ f0_min=50,
375
+ f0_max=1100,
376
+ ):
377
+ global input_audio_path2wav
378
+ time_step = self.window / self.sr * 1000
379
+ f0_min = f0_min
380
+ f0_max = f0_max
381
+ f0_mel_min = 1127 * np.log(1 + f0_min / 700)
382
+ f0_mel_max = 1127 * np.log(1 + f0_max / 700)
383
+
384
+ if f0_method == "pm":
385
+ f0 = (
386
+ parselmouth.Sound(x, self.sr)
387
+ .to_pitch_ac(
388
+ time_step=time_step / 1000,
389
+ voicing_threshold=0.6,
390
+ pitch_floor=f0_min,
391
+ pitch_ceiling=f0_max,
392
+ )
393
+ .selected_array["frequency"]
394
+ )
395
+ pad_size = (p_len - len(f0) + 1) // 2
396
+ if pad_size > 0 or p_len - len(f0) - pad_size > 0:
397
+ f0 = np.pad(
398
+ f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant"
399
+ )
400
+ elif f0_method == "harvest":
401
+ input_audio_path2wav[input_audio_path] = x.astype(np.double)
402
+ f0 = cache_harvest_f0(input_audio_path, self.sr, f0_max, f0_min, 10)
403
+ if filter_radius > 2:
404
+ f0 = signal.medfilt(f0, 3)
405
+ elif f0_method == "dio": # Potentially Buggy?
406
+ f0, t = pyworld.dio(
407
+ x.astype(np.double),
408
+ fs=self.sr,
409
+ f0_ceil=f0_max,
410
+ f0_floor=f0_min,
411
+ frame_period=10,
412
+ )
413
+ f0 = pyworld.stonemask(x.astype(np.double), f0, t, self.sr)
414
+ f0 = signal.medfilt(f0, 3)
415
+ elif f0_method == "crepe":
416
+ model = "full"
417
+ # Pick a batch size that doesn't cause memory errors on your gpu
418
+ batch_size = 512
419
+ # Compute pitch using first gpu
420
+ audio = torch.tensor(np.copy(x))[None].float()
421
+ f0, pd = torchcrepe.predict(
422
+ audio,
423
+ self.sr,
424
+ self.window,
425
+ f0_min,
426
+ f0_max,
427
+ model,
428
+ batch_size=batch_size,
429
+ device=self.device,
430
+ return_periodicity=True,
431
+ )
432
+ pd = torchcrepe.filter.median(pd, 3)
433
+ f0 = torchcrepe.filter.mean(f0, 3)
434
+ f0[pd < 0.1] = 0
435
+ f0 = f0[0].cpu().numpy()
436
+ elif f0_method == "crepe-tiny":
437
+ f0 = self.get_f0_official_crepe_computation(x, f0_min, f0_max, model="tiny")
438
+ elif f0_method == "mangio-crepe":
439
+ f0 = self.get_f0_crepe_computation(
440
+ x, f0_min, f0_max, p_len, crepe_hop_length=crepe_hop_length
441
+ )
442
+ elif f0_method == "mangio-crepe-tiny":
443
+ f0 = self.get_f0_crepe_computation(
444
+ x, f0_min, f0_max, p_len, crepe_hop_length=crepe_hop_length, model="tiny"
445
+ )
446
+ elif f0_method == "rmvpe":
447
+ if not hasattr(self, "model_rmvpe"):
448
+ from lib.infer.infer_libs.rmvpe import RMVPE
449
+
450
+ logger.info(
451
+ f"Loading rmvpe model, {os.environ['rmvpe_model_path']}"
452
+ )
453
+ self.model_rmvpe = RMVPE(
454
+ os.environ["rmvpe_model_path"],
455
+ is_half=self.is_half,
456
+ device=self.device,
457
+ )
458
+ f0 = self.model_rmvpe.infer_from_audio(x, thred=0.03)
459
+
460
+ if "privateuseone" in str(self.device): # clean ortruntime memory
461
+ del self.model_rmvpe.model
462
+ del self.model_rmvpe
463
+ logger.info("Cleaning ortruntime memory")
464
+ elif f0_method == "rmvpe+":
465
+ params = {'x': x, 'p_len': p_len, 'f0_up_key': f0_up_key, 'f0_min': f0_min,
466
+ 'f0_max': f0_max, 'time_step': time_step, 'filter_radius': filter_radius,
467
+ 'crepe_hop_length': crepe_hop_length, 'model': "full"
468
+ }
469
+ f0 = self.get_pitch_dependant_rmvpe(**params)
470
+ elif f0_method == "pyin":
471
+ f0 = self.get_f0_pyin_computation(input_audio_path, f0_min, f0_max)
472
+ elif f0_method == "fcpe_legacy":
473
+ f0 = self.get_fcpe(x, f0_min=f0_min, f0_max=f0_max, p_len=p_len)
474
+ elif f0_method == "fcpe":
475
+ f0 = self.get_torchfcpe(x, self.sr, f0_min, f0_max, p_len)
476
+ elif "hybrid" in f0_method:
477
+ # Perform hybrid median pitch estimation
478
+ input_audio_path2wav[input_audio_path] = x.astype(np.double)
479
+ f0 = self.get_f0_hybrid_computation(
480
+ f0_method,
481
+ input_audio_path,
482
+ x,
483
+ f0_min,
484
+ f0_max,
485
+ p_len,
486
+ filter_radius,
487
+ crepe_hop_length,
488
+ time_step,
489
+ )
490
+ #print("Autotune:", f0_autotune)
491
+ if f0_autotune == True:
492
+ print("Autotune:", f0_autotune)
493
+ f0 = self.autotune_f0(f0)
494
+
495
+ f0 *= pow(2, f0_up_key / 12)
496
+ # with open("test.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()]))
497
+ tf0 = self.sr // self.window # 每秒f0点数
498
+ if inp_f0 is not None:
499
+ delta_t = np.round(
500
+ (inp_f0[:, 0].max() - inp_f0[:, 0].min()) * tf0 + 1
501
+ ).astype("int16")
502
+ replace_f0 = np.interp(
503
+ list(range(delta_t)), inp_f0[:, 0] * 100, inp_f0[:, 1]
504
+ )
505
+ shape = f0[self.x_pad * tf0 : self.x_pad * tf0 + len(replace_f0)].shape[0]
506
+ f0[self.x_pad * tf0 : self.x_pad * tf0 + len(replace_f0)] = replace_f0[
507
+ :shape
508
+ ]
509
+ # with open("test_opt.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()]))
510
+ f0bak = f0.copy()
511
+ f0_mel = 1127 * np.log(1 + f0 / 700)
512
+ f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * 254 / (
513
+ f0_mel_max - f0_mel_min
514
+ ) + 1
515
+ f0_mel[f0_mel <= 1] = 1
516
+ f0_mel[f0_mel > 255] = 255
517
+ f0_coarse = np.rint(f0_mel).astype(np.int32)
518
+ return f0_coarse, f0bak # 1-0
519
+
520
+ def vc(
521
+ self,
522
+ model,
523
+ net_g,
524
+ sid,
525
+ audio0,
526
+ pitch,
527
+ pitchf,
528
+ times,
529
+ index,
530
+ big_npy,
531
+ index_rate,
532
+ version,
533
+ protect,
534
+ ): # ,file_index,file_big_npy
535
+ feats = torch.from_numpy(audio0)
536
+ if self.is_half:
537
+ feats = feats.half()
538
+ else:
539
+ feats = feats.float()
540
+ if feats.dim() == 2: # double channels
541
+ feats = feats.mean(-1)
542
+ assert feats.dim() == 1, feats.dim()
543
+ feats = feats.view(1, -1)
544
+ padding_mask = torch.BoolTensor(feats.shape).to(self.device).fill_(False)
545
+
546
+ inputs = {
547
+ "source": feats.to(self.device),
548
+ "padding_mask": padding_mask,
549
+ "output_layer": 9 if version == "v1" else 12,
550
+ }
551
+ t0 = ttime()
552
+ with torch.no_grad():
553
+ logits = model.extract_features(**inputs)
554
+ feats = model.final_proj(logits[0]) if version == "v1" else logits[0]
555
+ if protect < 0.5 and pitch is not None and pitchf is not None:
556
+ feats0 = feats.clone()
557
+ if (
558
+ not isinstance(index, type(None))
559
+ and not isinstance(big_npy, type(None))
560
+ and index_rate != 0
561
+ ):
562
+ npy = feats[0].cpu().numpy()
563
+ if self.is_half:
564
+ npy = npy.astype("float32")
565
+
566
+ # _, I = index.search(npy, 1)
567
+ # npy = big_npy[I.squeeze()]
568
+
569
+ score, ix = index.search(npy, k=8)
570
+ weight = np.square(1 / score)
571
+ weight /= weight.sum(axis=1, keepdims=True)
572
+ npy = np.sum(big_npy[ix] * np.expand_dims(weight, axis=2), axis=1)
573
+
574
+ if self.is_half:
575
+ npy = npy.astype("float16")
576
+ feats = (
577
+ torch.from_numpy(npy).unsqueeze(0).to(self.device) * index_rate
578
+ + (1 - index_rate) * feats
579
+ )
580
+
581
+ feats = F.interpolate(feats.permute(0, 2, 1), scale_factor=2).permute(0, 2, 1)
582
+ if protect < 0.5 and pitch is not None and pitchf is not None:
583
+ feats0 = F.interpolate(feats0.permute(0, 2, 1), scale_factor=2).permute(
584
+ 0, 2, 1
585
+ )
586
+ t1 = ttime()
587
+ p_len = audio0.shape[0] // self.window
588
+ if feats.shape[1] < p_len:
589
+ p_len = feats.shape[1]
590
+ if pitch is not None and pitchf is not None:
591
+ pitch = pitch[:, :p_len]
592
+ pitchf = pitchf[:, :p_len]
593
+
594
+ if protect < 0.5 and pitch is not None and pitchf is not None:
595
+ pitchff = pitchf.clone()
596
+ pitchff[pitchf > 0] = 1
597
+ pitchff[pitchf < 1] = protect
598
+ pitchff = pitchff.unsqueeze(-1)
599
+ feats = feats * pitchff + feats0 * (1 - pitchff)
600
+ feats = feats.to(feats0.dtype)
601
+ p_len = torch.tensor([p_len], device=self.device).long()
602
+ with torch.no_grad():
603
+ hasp = pitch is not None and pitchf is not None
604
+ arg = (feats, p_len, pitch, pitchf, sid) if hasp else (feats, p_len, sid)
605
+ audio1 = (net_g.infer(*arg)[0][0, 0]).data.cpu().float().numpy()
606
+ del hasp, arg
607
+ del feats, p_len, padding_mask
608
+ if torch.cuda.is_available():
609
+ torch.cuda.empty_cache()
610
+ t2 = ttime()
611
+ times[0] += t1 - t0
612
+ times[2] += t2 - t1
613
+ return audio1
614
+ def process_t(self, t, s, window, audio_pad, pitch, pitchf, times, index, big_npy, index_rate, version, protect, t_pad_tgt, if_f0, sid, model, net_g):
615
+ t = t // window * window
616
+ if if_f0 == 1:
617
+ return self.vc(
618
+ model,
619
+ net_g,
620
+ sid,
621
+ audio_pad[s : t + t_pad_tgt + window],
622
+ pitch[:, s // window : (t + t_pad_tgt) // window],
623
+ pitchf[:, s // window : (t + t_pad_tgt) // window],
624
+ times,
625
+ index,
626
+ big_npy,
627
+ index_rate,
628
+ version,
629
+ protect,
630
+ )[t_pad_tgt : -t_pad_tgt]
631
+ else:
632
+ return self.vc(
633
+ model,
634
+ net_g,
635
+ sid,
636
+ audio_pad[s : t + t_pad_tgt + window],
637
+ None,
638
+ None,
639
+ times,
640
+ index,
641
+ big_npy,
642
+ index_rate,
643
+ version,
644
+ protect,
645
+ )[t_pad_tgt : -t_pad_tgt]
646
+
647
+
648
+ def pipeline(
649
+ self,
650
+ model,
651
+ net_g,
652
+ sid,
653
+ audio,
654
+ input_audio_path,
655
+ times,
656
+ f0_up_key,
657
+ f0_method,
658
+ file_index,
659
+ index_rate,
660
+ if_f0,
661
+ filter_radius,
662
+ tgt_sr,
663
+ resample_sr,
664
+ rms_mix_rate,
665
+ version,
666
+ protect,
667
+ crepe_hop_length,
668
+ f0_autotune,
669
+ f0_min=50,
670
+ f0_max=1100
671
+ ):
672
+ if (
673
+ file_index != ""
674
+ and isinstance(file_index, str)
675
+ # and file_big_npy != ""
676
+ # and os.path.exists(file_big_npy) == True
677
+ and os.path.exists(file_index)
678
+ and index_rate != 0
679
+ ):
680
+ try:
681
+ index = faiss.read_index(file_index)
682
+ # big_npy = np.load(file_big_npy)
683
+ big_npy = index.reconstruct_n(0, index.ntotal)
684
+ except:
685
+ traceback.print_exc()
686
+ index = big_npy = None
687
+ else:
688
+ index = big_npy = None
689
+ audio = signal.filtfilt(bh, ah, audio)
690
+ audio_pad = np.pad(audio, (self.window // 2, self.window // 2), mode="reflect")
691
+ opt_ts = []
692
+ if audio_pad.shape[0] > self.t_max:
693
+ audio_sum = np.zeros_like(audio)
694
+ for i in range(self.window):
695
+ audio_sum += audio_pad[i : i - self.window]
696
+ for t in range(self.t_center, audio.shape[0], self.t_center):
697
+ opt_ts.append(
698
+ t
699
+ - self.t_query
700
+ + np.where(
701
+ np.abs(audio_sum[t - self.t_query : t + self.t_query])
702
+ == np.abs(audio_sum[t - self.t_query : t + self.t_query]).min()
703
+ )[0][0]
704
+ )
705
+ s = 0
706
+ audio_opt = []
707
+ t = None
708
+ t1 = ttime()
709
+ audio_pad = np.pad(audio, (self.t_pad, self.t_pad), mode="reflect")
710
+ p_len = audio_pad.shape[0] // self.window
711
+ inp_f0 = None
712
+
713
+ sid = torch.tensor(sid, device=self.device).unsqueeze(0).long()
714
+ pitch, pitchf = None, None
715
+ if if_f0:
716
+ pitch, pitchf = self.get_f0(
717
+ input_audio_path,
718
+ audio_pad,
719
+ p_len,
720
+ f0_up_key,
721
+ f0_method,
722
+ filter_radius,
723
+ crepe_hop_length,
724
+ f0_autotune,
725
+ inp_f0,
726
+ f0_min,
727
+ f0_max
728
+ )
729
+ pitch = pitch[:p_len]
730
+ pitchf = pitchf[:p_len]
731
+ if "mps" not in str(self.device) or "xpu" not in str(self.device):
732
+ pitchf = pitchf.astype(np.float32)
733
+ pitch = torch.tensor(pitch, device=self.device).unsqueeze(0).long()
734
+ pitchf = torch.tensor(pitchf, device=self.device).unsqueeze(0).float()
735
+ t2 = ttime()
736
+ times[1] += t2 - t1
737
+
738
+ with tqdm(total=len(opt_ts), desc="Processing", unit="window") as pbar:
739
+ for i, t in enumerate(opt_ts):
740
+ t = t // self.window * self.window
741
+ start = s
742
+ end = t + self.t_pad2 + self.window
743
+ audio_slice = audio_pad[start:end]
744
+ pitch_slice = pitch[:, start // self.window:end // self.window] if if_f0 else None
745
+ pitchf_slice = pitchf[:, start // self.window:end // self.window] if if_f0 else None
746
+ audio_opt.append(self.vc(model, net_g, sid, audio_slice, pitch_slice, pitchf_slice, times, index, big_npy, index_rate, version, protect)[self.t_pad_tgt : -self.t_pad_tgt])
747
+ s = t
748
+ pbar.update(1)
749
+ pbar.refresh()
750
+
751
+ audio_slice = audio_pad[t:]
752
+ pitch_slice = pitch[:, t // self.window:] if if_f0 and t is not None else pitch
753
+ pitchf_slice = pitchf[:, t // self.window:] if if_f0 and t is not None else pitchf
754
+ audio_opt.append(self.vc(model, net_g, sid, audio_slice, pitch_slice, pitchf_slice, times, index, big_npy, index_rate, version, protect)[self.t_pad_tgt : -self.t_pad_tgt])
755
+
756
+ audio_opt = np.concatenate(audio_opt)
757
+ if rms_mix_rate != 1:
758
+ audio_opt = change_rms(audio, 16000, audio_opt, tgt_sr, rms_mix_rate)
759
+ if tgt_sr != resample_sr >= 16000:
760
+ audio_opt = librosa.resample(
761
+ audio_opt, orig_sr=tgt_sr, target_sr=resample_sr
762
+ )
763
+ audio_max = np.abs(audio_opt).max() / 0.99
764
+ max_int16 = 32768
765
+ if audio_max > 1:
766
+ max_int16 /= audio_max
767
+ audio_opt = (audio_opt * max_int16).astype(np.int16)
768
+ del pitch, pitchf, sid
769
+ if torch.cuda.is_available():
770
+ torch.cuda.empty_cache()
771
+
772
+ print("Returning completed audio...")
773
+ return audio_opt