Eempostor commited on
Commit
83eb281
1 Parent(s): 7620562

Delete lib/pipeline.py

Browse files
Files changed (1) hide show
  1. lib/pipeline.py +0 -773
lib/pipeline.py DELETED
@@ -1,773 +0,0 @@
1
- import os
2
- import sys
3
- import gc
4
- import traceback
5
- import logging
6
-
7
- logger = logging.getLogger(__name__)
8
-
9
- from functools import lru_cache
10
- from time import time as ttime
11
- from torch import Tensor
12
- import faiss
13
- import librosa
14
- import numpy as np
15
- import parselmouth
16
- import pyworld
17
- import torch.nn.functional as F
18
- from scipy import signal
19
- from tqdm import tqdm
20
-
21
- import random
22
- now_dir = os.getcwd()
23
- sys.path.append(now_dir)
24
- import re
25
- from functools import partial
26
- bh, ah = signal.butter(N=5, Wn=48, btype="high", fs=16000)
27
-
28
- input_audio_path2wav = {}
29
- import torchcrepe # Fork Feature. Crepe algo for training and preprocess
30
- from torchfcpe import spawn_bundled_infer_model
31
- import torch
32
- from lib.infer_libs.rmvpe import RMVPE
33
- from lib.infer_libs.fcpe import FCPE
34
-
35
- @lru_cache
36
- def cache_harvest_f0(input_audio_path, fs, f0max, f0min, frame_period):
37
- audio = input_audio_path2wav[input_audio_path]
38
- f0, t = pyworld.harvest(
39
- audio,
40
- fs=fs,
41
- f0_ceil=f0max,
42
- f0_floor=f0min,
43
- frame_period=frame_period,
44
- )
45
- f0 = pyworld.stonemask(audio, f0, t, fs)
46
- return f0
47
-
48
-
49
- def change_rms(data1, sr1, data2, sr2, rate): # 1是输入音频,2是输出音频,rate是2的占比
50
- # print(data1.max(),data2.max())
51
- rms1 = librosa.feature.rms(
52
- y=data1, frame_length=sr1 // 2 * 2, hop_length=sr1 // 2
53
- ) # 每半秒一个点
54
- rms2 = librosa.feature.rms(y=data2, frame_length=sr2 // 2 * 2, hop_length=sr2 // 2)
55
- rms1 = torch.from_numpy(rms1)
56
- rms1 = F.interpolate(
57
- rms1.unsqueeze(0), size=data2.shape[0], mode="linear"
58
- ).squeeze()
59
- rms2 = torch.from_numpy(rms2)
60
- rms2 = F.interpolate(
61
- rms2.unsqueeze(0), size=data2.shape[0], mode="linear"
62
- ).squeeze()
63
- rms2 = torch.max(rms2, torch.zeros_like(rms2) + 1e-6)
64
- data2 *= (
65
- torch.pow(rms1, torch.tensor(1 - rate))
66
- * torch.pow(rms2, torch.tensor(rate - 1))
67
- ).numpy()
68
- return data2
69
-
70
-
71
- class Pipeline(object):
72
- def __init__(self, tgt_sr, config):
73
- self.x_pad, self.x_query, self.x_center, self.x_max, self.is_half = (
74
- config.x_pad,
75
- config.x_query,
76
- config.x_center,
77
- config.x_max,
78
- config.is_half,
79
- )
80
- self.sr = 16000 # hubert输入采样率
81
- self.window = 160 # 每帧点数
82
- self.t_pad = self.sr * self.x_pad # 每条前后pad时间
83
- self.t_pad_tgt = tgt_sr * self.x_pad
84
- self.t_pad2 = self.t_pad * 2
85
- self.t_query = self.sr * self.x_query # 查询切点前后查询时间
86
- self.t_center = self.sr * self.x_center # 查询切点位置
87
- self.t_max = self.sr * self.x_max # 免查询时长阈值
88
- self.device = config.device
89
- self.model_rmvpe = RMVPE(os.environ["rmvpe_model_path"], is_half=self.is_half, device=self.device)
90
-
91
- self.note_dict = [
92
- 65.41, 69.30, 73.42, 77.78, 82.41, 87.31,
93
- 92.50, 98.00, 103.83, 110.00, 116.54, 123.47,
94
- 130.81, 138.59, 146.83, 155.56, 164.81, 174.61,
95
- 185.00, 196.00, 207.65, 220.00, 233.08, 246.94,
96
- 261.63, 277.18, 293.66, 311.13, 329.63, 349.23,
97
- 369.99, 392.00, 415.30, 440.00, 466.16, 493.88,
98
- 523.25, 554.37, 587.33, 622.25, 659.25, 698.46,
99
- 739.99, 783.99, 830.61, 880.00, 932.33, 987.77,
100
- 1046.50, 1108.73, 1174.66, 1244.51, 1318.51, 1396.91,
101
- 1479.98, 1567.98, 1661.22, 1760.00, 1864.66, 1975.53,
102
- 2093.00, 2217.46, 2349.32, 2489.02, 2637.02, 2793.83,
103
- 2959.96, 3135.96, 3322.44, 3520.00, 3729.31, 3951.07
104
- ]
105
-
106
- # Fork Feature: Get the best torch device to use for f0 algorithms that require a torch device. Will return the type (torch.device)
107
- def get_optimal_torch_device(self, index: int = 0) -> torch.device:
108
- if torch.cuda.is_available():
109
- return torch.device(
110
- f"cuda:{index % torch.cuda.device_count()}"
111
- ) # Very fast
112
- elif torch.backends.mps.is_available():
113
- return torch.device("mps")
114
- return torch.device("cpu")
115
-
116
- # Fork Feature: Compute f0 with the crepe method
117
- def get_f0_crepe_computation(
118
- self,
119
- x,
120
- f0_min,
121
- f0_max,
122
- p_len,
123
- *args, # 512 before. Hop length changes the speed that the voice jumps to a different dramatic pitch. Lower hop lengths means more pitch accuracy but longer inference time.
124
- **kwargs, # Either use crepe-tiny "tiny" or crepe "full". Default is full
125
- ):
126
- x = x.astype(
127
- np.float32
128
- ) # fixes the F.conv2D exception. We needed to convert double to float.
129
- x /= np.quantile(np.abs(x), 0.999)
130
- torch_device = self.get_optimal_torch_device()
131
- audio = torch.from_numpy(x).to(torch_device, copy=True)
132
- audio = torch.unsqueeze(audio, dim=0)
133
- if audio.ndim == 2 and audio.shape[0] > 1:
134
- audio = torch.mean(audio, dim=0, keepdim=True).detach()
135
- audio = audio.detach()
136
- hop_length = kwargs.get('crepe_hop_length', 160)
137
- model = kwargs.get('model', 'full')
138
- print("Initiating prediction with a crepe_hop_length of: " + str(hop_length))
139
- pitch: Tensor = torchcrepe.predict(
140
- audio,
141
- self.sr,
142
- hop_length,
143
- f0_min,
144
- f0_max,
145
- model,
146
- batch_size=hop_length * 2,
147
- device=torch_device,
148
- pad=True,
149
- )
150
- p_len = p_len or x.shape[0] // hop_length
151
- # Resize the pitch for final f0
152
- source = np.array(pitch.squeeze(0).cpu().float().numpy())
153
- source[source < 0.001] = np.nan
154
- target = np.interp(
155
- np.arange(0, len(source) * p_len, len(source)) / p_len,
156
- np.arange(0, len(source)),
157
- source,
158
- )
159
- f0 = np.nan_to_num(target)
160
- return f0 # Resized f0
161
-
162
- def get_f0_official_crepe_computation(
163
- self,
164
- x,
165
- f0_min,
166
- f0_max,
167
- *args,
168
- **kwargs
169
- ):
170
- # Pick a batch size that doesn't cause memory errors on your gpu
171
- batch_size = 512
172
- # Compute pitch using first gpu
173
- audio = torch.tensor(np.copy(x))[None].float()
174
- model = kwargs.get('model', 'full')
175
- f0, pd = torchcrepe.predict(
176
- audio,
177
- self.sr,
178
- self.window,
179
- f0_min,
180
- f0_max,
181
- model,
182
- batch_size=batch_size,
183
- device=self.device,
184
- return_periodicity=True,
185
- )
186
- pd = torchcrepe.filter.median(pd, 3)
187
- f0 = torchcrepe.filter.mean(f0, 3)
188
- f0[pd < 0.1] = 0
189
- f0 = f0[0].cpu().numpy()
190
- return f0
191
-
192
- # Fork Feature: Compute pYIN f0 method
193
- def get_f0_pyin_computation(self, x, f0_min, f0_max):
194
- y, sr = librosa.load(x, sr=self.sr, mono=True)
195
- f0, _, _ = librosa.pyin(y, fmin=f0_min, fmax=f0_max, sr=self.sr)
196
- f0 = f0[1:] # Get rid of extra first frame
197
- return f0
198
-
199
- def get_rmvpe(self, x, *args, **kwargs):
200
- if not hasattr(self, "model_rmvpe"):
201
- from lib.infer.infer_libs.rmvpe import RMVPE
202
-
203
- logger.info(
204
- f"Loading rmvpe model, {os.environ['rmvpe_model_path']}"
205
- )
206
- self.model_rmvpe = RMVPE(
207
- os.environ["rmvpe_model_path"],
208
- is_half=self.is_half,
209
- device=self.device,
210
- )
211
- f0 = self.model_rmvpe.infer_from_audio(x, thred=0.03)
212
-
213
- if "privateuseone" in str(self.device): # clean ortruntime memory
214
- del self.model_rmvpe.model
215
- del self.model_rmvpe
216
- logger.info("Cleaning ortruntime memory")
217
-
218
- return f0
219
-
220
-
221
- def get_pitch_dependant_rmvpe(self, x, f0_min=1, f0_max=40000, *args, **kwargs):
222
- if not hasattr(self, "model_rmvpe"):
223
- from lib.infer.infer_libs.rmvpe import RMVPE
224
-
225
- logger.info(
226
- f"Loading rmvpe model, {os.environ['rmvpe_model_path']}"
227
- )
228
- self.model_rmvpe = RMVPE(
229
- os.environ["rmvpe_model_path"],
230
- is_half=self.is_half,
231
- device=self.device,
232
- )
233
- f0 = self.model_rmvpe.infer_from_audio_with_pitch(x, thred=0.03, f0_min=f0_min, f0_max=f0_max)
234
- if "privateuseone" in str(self.device): # clean ortruntime memory
235
- del self.model_rmvpe.model
236
- del self.model_rmvpe
237
- logger.info("Cleaning ortruntime memory")
238
-
239
- return f0
240
-
241
- def get_fcpe(self, x, f0_min, f0_max, p_len, *args, **kwargs):
242
- self.model_fcpe = FCPE(os.environ["fcpe_model_path"], f0_min=f0_min, f0_max=f0_max, dtype=torch.float32, device=self.device, sampling_rate=self.sr, threshold=0.03)
243
- f0 = self.model_fcpe.compute_f0(x, p_len=p_len)
244
- del self.model_fcpe
245
- gc.collect()
246
- return f0
247
-
248
- def get_torchfcpe(self, x, sr, f0_min, f0_max, p_len, *args, **kwargs):
249
- self.model_torchfcpe = spawn_bundled_infer_model(device=self.device)
250
- f0 = self.model_torchfcpe.infer(
251
- torch.from_numpy(x).float().unsqueeze(0).unsqueeze(-1).to(self.device),
252
- sr=sr,
253
- decoder_mode="local_argmax",
254
- threshold=0.03,
255
- f0_min=f0_min,
256
- f0_max=f0_max,
257
- output_interp_target_length=p_len
258
- )
259
- return f0.squeeze().cpu().numpy()
260
-
261
- def autotune_f0(self, f0):
262
- autotuned_f0 = []
263
- for freq in f0:
264
- closest_notes = [x for x in self.note_dict if abs(x - freq) == min(abs(n - freq) for n in self.note_dict)]
265
- autotuned_f0.append(random.choice(closest_notes))
266
- return np.array(autotuned_f0, np.float64)
267
-
268
-
269
- # Fork Feature: Acquire median hybrid f0 estimation calculation
270
- def get_f0_hybrid_computation(
271
- self,
272
- methods_str,
273
- input_audio_path,
274
- x,
275
- f0_min,
276
- f0_max,
277
- p_len,
278
- filter_radius,
279
- crepe_hop_length,
280
- time_step,
281
- ):
282
- # Get various f0 methods from input to use in the computation stack
283
- methods_str = re.search('hybrid\[(.+)\]', methods_str)
284
- if methods_str: # Ensure a match was found
285
- methods = [method.strip() for method in methods_str.group(1).split('+')]
286
- f0_computation_stack = []
287
-
288
- print("Calculating f0 pitch estimations for methods: %s" % str(methods))
289
- x = x.astype(np.float32)
290
- x /= np.quantile(np.abs(x), 0.999)
291
- # Get f0 calculations for all methods specified
292
- for method in methods:
293
- f0 = None
294
- if method == "pm":
295
- f0 = (
296
- parselmouth.Sound(x, self.sr)
297
- .to_pitch_ac(
298
- time_step=time_step / 1000,
299
- voicing_threshold=0.6,
300
- pitch_floor=f0_min,
301
- pitch_ceiling=f0_max,
302
- )
303
- .selected_array["frequency"]
304
- )
305
- pad_size = (p_len - len(f0) + 1) // 2
306
- if pad_size > 0 or p_len - len(f0) - pad_size > 0:
307
- f0 = np.pad(
308
- f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant"
309
- )
310
- elif method == "crepe":
311
- f0 = self.get_f0_official_crepe_computation(x, f0_min, f0_max, model="full")
312
- f0 = f0[1:]
313
- elif method == "crepe-tiny":
314
- f0 = self.get_f0_official_crepe_computation(x, f0_min, f0_max, model="tiny")
315
- f0 = f0[1:] # Get rid of extra first frame
316
- elif method == "mangio-crepe":
317
- f0 = self.get_f0_crepe_computation(
318
- x, f0_min, f0_max, p_len, crepe_hop_length=crepe_hop_length
319
- )
320
- elif method == "mangio-crepe-tiny":
321
- f0 = self.get_f0_crepe_computation(
322
- x, f0_min, f0_max, p_len, crepe_hop_length=crepe_hop_length, model="tiny"
323
- )
324
- elif method == "harvest":
325
- input_audio_path2wav[input_audio_path] = x.astype(np.double)
326
- f0 = cache_harvest_f0(input_audio_path, self.sr, f0_max, f0_min, 10)
327
- if filter_radius > 2:
328
- f0 = signal.medfilt(f0, 3)
329
- elif method == "dio":
330
- f0, t = pyworld.dio(
331
- x.astype(np.double),
332
- fs=self.sr,
333
- f0_ceil=f0_max,
334
- f0_floor=f0_min,
335
- frame_period=10,
336
- )
337
- f0 = pyworld.stonemask(x.astype(np.double), f0, t, self.sr)
338
- f0 = signal.medfilt(f0, 3)
339
- f0 = f0[1:]
340
- elif method == "rmvpe":
341
- f0 = self.get_rmvpe(x)
342
- f0 = f0[1:]
343
- elif method == "fcpe":
344
- f0 = self.get_fcpe(x, f0_min=f0_min, f0_max=f0_max, p_len=p_len)
345
- elif method == "torchfcpe":
346
- f0 = self.get_torchfcpe(x, self.sr, f0_min, f0_max, p_len)
347
- elif method == "pyin":
348
- f0 = self.get_f0_pyin_computation(input_audio_path, f0_min, f0_max)
349
- # Push method to the stack
350
- f0_computation_stack.append(f0)
351
-
352
- for fc in f0_computation_stack:
353
- print(len(fc))
354
-
355
- print("Calculating hybrid median f0 from the stack of: %s" % str(methods))
356
- f0_median_hybrid = None
357
- if len(f0_computation_stack) == 1:
358
- f0_median_hybrid = f0_computation_stack[0]
359
- else:
360
- f0_median_hybrid = np.nanmedian(f0_computation_stack, axis=0)
361
- return f0_median_hybrid
362
-
363
- def get_f0(
364
- self,
365
- input_audio_path,
366
- x,
367
- p_len,
368
- f0_up_key,
369
- f0_method,
370
- filter_radius,
371
- crepe_hop_length,
372
- f0_autotune,
373
- inp_f0=None,
374
- f0_min=50,
375
- f0_max=1100,
376
- ):
377
- global input_audio_path2wav
378
- time_step = self.window / self.sr * 1000
379
- f0_min = f0_min
380
- f0_max = f0_max
381
- f0_mel_min = 1127 * np.log(1 + f0_min / 700)
382
- f0_mel_max = 1127 * np.log(1 + f0_max / 700)
383
-
384
- if f0_method == "pm":
385
- f0 = (
386
- parselmouth.Sound(x, self.sr)
387
- .to_pitch_ac(
388
- time_step=time_step / 1000,
389
- voicing_threshold=0.6,
390
- pitch_floor=f0_min,
391
- pitch_ceiling=f0_max,
392
- )
393
- .selected_array["frequency"]
394
- )
395
- pad_size = (p_len - len(f0) + 1) // 2
396
- if pad_size > 0 or p_len - len(f0) - pad_size > 0:
397
- f0 = np.pad(
398
- f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant"
399
- )
400
- elif f0_method == "harvest":
401
- input_audio_path2wav[input_audio_path] = x.astype(np.double)
402
- f0 = cache_harvest_f0(input_audio_path, self.sr, f0_max, f0_min, 10)
403
- if filter_radius > 2:
404
- f0 = signal.medfilt(f0, 3)
405
- elif f0_method == "dio": # Potentially Buggy?
406
- f0, t = pyworld.dio(
407
- x.astype(np.double),
408
- fs=self.sr,
409
- f0_ceil=f0_max,
410
- f0_floor=f0_min,
411
- frame_period=10,
412
- )
413
- f0 = pyworld.stonemask(x.astype(np.double), f0, t, self.sr)
414
- f0 = signal.medfilt(f0, 3)
415
- elif f0_method == "crepe":
416
- model = "full"
417
- # Pick a batch size that doesn't cause memory errors on your gpu
418
- batch_size = 512
419
- # Compute pitch using first gpu
420
- audio = torch.tensor(np.copy(x))[None].float()
421
- f0, pd = torchcrepe.predict(
422
- audio,
423
- self.sr,
424
- self.window,
425
- f0_min,
426
- f0_max,
427
- model,
428
- batch_size=batch_size,
429
- device=self.device,
430
- return_periodicity=True,
431
- )
432
- pd = torchcrepe.filter.median(pd, 3)
433
- f0 = torchcrepe.filter.mean(f0, 3)
434
- f0[pd < 0.1] = 0
435
- f0 = f0[0].cpu().numpy()
436
- elif f0_method == "crepe-tiny":
437
- f0 = self.get_f0_official_crepe_computation(x, f0_min, f0_max, model="tiny")
438
- elif f0_method == "mangio-crepe":
439
- f0 = self.get_f0_crepe_computation(
440
- x, f0_min, f0_max, p_len, crepe_hop_length=crepe_hop_length
441
- )
442
- elif f0_method == "mangio-crepe-tiny":
443
- f0 = self.get_f0_crepe_computation(
444
- x, f0_min, f0_max, p_len, crepe_hop_length=crepe_hop_length, model="tiny"
445
- )
446
- elif f0_method == "rmvpe":
447
- if not hasattr(self, "model_rmvpe"):
448
- from lib.infer.infer_libs.rmvpe import RMVPE
449
-
450
- logger.info(
451
- f"Loading rmvpe model, {os.environ['rmvpe_model_path']}"
452
- )
453
- self.model_rmvpe = RMVPE(
454
- os.environ["rmvpe_model_path"],
455
- is_half=self.is_half,
456
- device=self.device,
457
- )
458
- f0 = self.model_rmvpe.infer_from_audio(x, thred=0.03)
459
-
460
- if "privateuseone" in str(self.device): # clean ortruntime memory
461
- del self.model_rmvpe.model
462
- del self.model_rmvpe
463
- logger.info("Cleaning ortruntime memory")
464
- elif f0_method == "rmvpe+":
465
- params = {'x': x, 'p_len': p_len, 'f0_up_key': f0_up_key, 'f0_min': f0_min,
466
- 'f0_max': f0_max, 'time_step': time_step, 'filter_radius': filter_radius,
467
- 'crepe_hop_length': crepe_hop_length, 'model': "full"
468
- }
469
- f0 = self.get_pitch_dependant_rmvpe(**params)
470
- elif f0_method == "pyin":
471
- f0 = self.get_f0_pyin_computation(input_audio_path, f0_min, f0_max)
472
- elif f0_method == "fcpe":
473
- f0 = self.get_fcpe(x, f0_min=f0_min, f0_max=f0_max, p_len=p_len)
474
- elif f0_method == "torchfcpe":
475
- f0 = self.get_torchfcpe(x, self.sr, f0_min, f0_max, p_len)
476
- elif "hybrid" in f0_method:
477
- # Perform hybrid median pitch estimation
478
- input_audio_path2wav[input_audio_path] = x.astype(np.double)
479
- f0 = self.get_f0_hybrid_computation(
480
- f0_method,
481
- input_audio_path,
482
- x,
483
- f0_min,
484
- f0_max,
485
- p_len,
486
- filter_radius,
487
- crepe_hop_length,
488
- time_step,
489
- )
490
- #print("Autotune:", f0_autotune)
491
- if f0_autotune == True:
492
- print("Autotune:", f0_autotune)
493
- f0 = self.autotune_f0(f0)
494
-
495
- f0 *= pow(2, f0_up_key / 12)
496
- # with open("test.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()]))
497
- tf0 = self.sr // self.window # 每秒f0点数
498
- if inp_f0 is not None:
499
- delta_t = np.round(
500
- (inp_f0[:, 0].max() - inp_f0[:, 0].min()) * tf0 + 1
501
- ).astype("int16")
502
- replace_f0 = np.interp(
503
- list(range(delta_t)), inp_f0[:, 0] * 100, inp_f0[:, 1]
504
- )
505
- shape = f0[self.x_pad * tf0 : self.x_pad * tf0 + len(replace_f0)].shape[0]
506
- f0[self.x_pad * tf0 : self.x_pad * tf0 + len(replace_f0)] = replace_f0[
507
- :shape
508
- ]
509
- # with open("test_opt.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()]))
510
- f0bak = f0.copy()
511
- f0_mel = 1127 * np.log(1 + f0 / 700)
512
- f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * 254 / (
513
- f0_mel_max - f0_mel_min
514
- ) + 1
515
- f0_mel[f0_mel <= 1] = 1
516
- f0_mel[f0_mel > 255] = 255
517
- f0_coarse = np.rint(f0_mel).astype(np.int32)
518
- return f0_coarse, f0bak # 1-0
519
-
520
- def vc(
521
- self,
522
- model,
523
- net_g,
524
- sid,
525
- audio0,
526
- pitch,
527
- pitchf,
528
- times,
529
- index,
530
- big_npy,
531
- index_rate,
532
- version,
533
- protect,
534
- ): # ,file_index,file_big_npy
535
- feats = torch.from_numpy(audio0)
536
- if self.is_half:
537
- feats = feats.half()
538
- else:
539
- feats = feats.float()
540
- if feats.dim() == 2: # double channels
541
- feats = feats.mean(-1)
542
- assert feats.dim() == 1, feats.dim()
543
- feats = feats.view(1, -1)
544
- padding_mask = torch.BoolTensor(feats.shape).to(self.device).fill_(False)
545
-
546
- inputs = {
547
- "source": feats.to(self.device),
548
- "padding_mask": padding_mask,
549
- "output_layer": 9 if version == "v1" else 12,
550
- }
551
- t0 = ttime()
552
- with torch.no_grad():
553
- logits = model.extract_features(**inputs)
554
- feats = model.final_proj(logits[0]) if version == "v1" else logits[0]
555
- if protect < 0.5 and pitch is not None and pitchf is not None:
556
- feats0 = feats.clone()
557
- if (
558
- not isinstance(index, type(None))
559
- and not isinstance(big_npy, type(None))
560
- and index_rate != 0
561
- ):
562
- npy = feats[0].cpu().numpy()
563
- if self.is_half:
564
- npy = npy.astype("float32")
565
-
566
- # _, I = index.search(npy, 1)
567
- # npy = big_npy[I.squeeze()]
568
-
569
- score, ix = index.search(npy, k=8)
570
- weight = np.square(1 / score)
571
- weight /= weight.sum(axis=1, keepdims=True)
572
- npy = np.sum(big_npy[ix] * np.expand_dims(weight, axis=2), axis=1)
573
-
574
- if self.is_half:
575
- npy = npy.astype("float16")
576
- feats = (
577
- torch.from_numpy(npy).unsqueeze(0).to(self.device) * index_rate
578
- + (1 - index_rate) * feats
579
- )
580
-
581
- feats = F.interpolate(feats.permute(0, 2, 1), scale_factor=2).permute(0, 2, 1)
582
- if protect < 0.5 and pitch is not None and pitchf is not None:
583
- feats0 = F.interpolate(feats0.permute(0, 2, 1), scale_factor=2).permute(
584
- 0, 2, 1
585
- )
586
- t1 = ttime()
587
- p_len = audio0.shape[0] // self.window
588
- if feats.shape[1] < p_len:
589
- p_len = feats.shape[1]
590
- if pitch is not None and pitchf is not None:
591
- pitch = pitch[:, :p_len]
592
- pitchf = pitchf[:, :p_len]
593
-
594
- if protect < 0.5 and pitch is not None and pitchf is not None:
595
- pitchff = pitchf.clone()
596
- pitchff[pitchf > 0] = 1
597
- pitchff[pitchf < 1] = protect
598
- pitchff = pitchff.unsqueeze(-1)
599
- feats = feats * pitchff + feats0 * (1 - pitchff)
600
- feats = feats.to(feats0.dtype)
601
- p_len = torch.tensor([p_len], device=self.device).long()
602
- with torch.no_grad():
603
- hasp = pitch is not None and pitchf is not None
604
- arg = (feats, p_len, pitch, pitchf, sid) if hasp else (feats, p_len, sid)
605
- audio1 = (net_g.infer(*arg)[0][0, 0]).data.cpu().float().numpy()
606
- del hasp, arg
607
- del feats, p_len, padding_mask
608
- if torch.cuda.is_available():
609
- torch.cuda.empty_cache()
610
- t2 = ttime()
611
- times[0] += t1 - t0
612
- times[2] += t2 - t1
613
- return audio1
614
- def process_t(self, t, s, window, audio_pad, pitch, pitchf, times, index, big_npy, index_rate, version, protect, t_pad_tgt, if_f0, sid, model, net_g):
615
- t = t // window * window
616
- if if_f0 == 1:
617
- return self.vc(
618
- model,
619
- net_g,
620
- sid,
621
- audio_pad[s : t + t_pad_tgt + window],
622
- pitch[:, s // window : (t + t_pad_tgt) // window],
623
- pitchf[:, s // window : (t + t_pad_tgt) // window],
624
- times,
625
- index,
626
- big_npy,
627
- index_rate,
628
- version,
629
- protect,
630
- )[t_pad_tgt : -t_pad_tgt]
631
- else:
632
- return self.vc(
633
- model,
634
- net_g,
635
- sid,
636
- audio_pad[s : t + t_pad_tgt + window],
637
- None,
638
- None,
639
- times,
640
- index,
641
- big_npy,
642
- index_rate,
643
- version,
644
- protect,
645
- )[t_pad_tgt : -t_pad_tgt]
646
-
647
-
648
- def pipeline(
649
- self,
650
- model,
651
- net_g,
652
- sid,
653
- audio,
654
- input_audio_path,
655
- times,
656
- f0_up_key,
657
- f0_method,
658
- file_index,
659
- index_rate,
660
- if_f0,
661
- filter_radius,
662
- tgt_sr,
663
- resample_sr,
664
- rms_mix_rate,
665
- version,
666
- protect,
667
- crepe_hop_length,
668
- f0_autotune,
669
- f0_min=50,
670
- f0_max=1100
671
- ):
672
- if (
673
- file_index != ""
674
- and isinstance(file_index, str)
675
- # and file_big_npy != ""
676
- # and os.path.exists(file_big_npy) == True
677
- and os.path.exists(file_index)
678
- and index_rate != 0
679
- ):
680
- try:
681
- index = faiss.read_index(file_index)
682
- # big_npy = np.load(file_big_npy)
683
- big_npy = index.reconstruct_n(0, index.ntotal)
684
- except:
685
- traceback.print_exc()
686
- index = big_npy = None
687
- else:
688
- index = big_npy = None
689
- audio = signal.filtfilt(bh, ah, audio)
690
- audio_pad = np.pad(audio, (self.window // 2, self.window // 2), mode="reflect")
691
- opt_ts = []
692
- if audio_pad.shape[0] > self.t_max:
693
- audio_sum = np.zeros_like(audio)
694
- for i in range(self.window):
695
- audio_sum += audio_pad[i : i - self.window]
696
- for t in range(self.t_center, audio.shape[0], self.t_center):
697
- opt_ts.append(
698
- t
699
- - self.t_query
700
- + np.where(
701
- np.abs(audio_sum[t - self.t_query : t + self.t_query])
702
- == np.abs(audio_sum[t - self.t_query : t + self.t_query]).min()
703
- )[0][0]
704
- )
705
- s = 0
706
- audio_opt = []
707
- t = None
708
- t1 = ttime()
709
- audio_pad = np.pad(audio, (self.t_pad, self.t_pad), mode="reflect")
710
- p_len = audio_pad.shape[0] // self.window
711
- inp_f0 = None
712
-
713
- sid = torch.tensor(sid, device=self.device).unsqueeze(0).long()
714
- pitch, pitchf = None, None
715
- if if_f0:
716
- pitch, pitchf = self.get_f0(
717
- input_audio_path,
718
- audio_pad,
719
- p_len,
720
- f0_up_key,
721
- f0_method,
722
- filter_radius,
723
- crepe_hop_length,
724
- f0_autotune,
725
- inp_f0,
726
- f0_min,
727
- f0_max
728
- )
729
- pitch = pitch[:p_len]
730
- pitchf = pitchf[:p_len]
731
- if "mps" not in str(self.device) or "xpu" not in str(self.device):
732
- pitchf = pitchf.astype(np.float32)
733
- pitch = torch.tensor(pitch, device=self.device).unsqueeze(0).long()
734
- pitchf = torch.tensor(pitchf, device=self.device).unsqueeze(0).float()
735
- t2 = ttime()
736
- times[1] += t2 - t1
737
-
738
- with tqdm(total=len(opt_ts), desc="Processing", unit="window") as pbar:
739
- for i, t in enumerate(opt_ts):
740
- t = t // self.window * self.window
741
- start = s
742
- end = t + self.t_pad2 + self.window
743
- audio_slice = audio_pad[start:end]
744
- pitch_slice = pitch[:, start // self.window:end // self.window] if if_f0 else None
745
- pitchf_slice = pitchf[:, start // self.window:end // self.window] if if_f0 else None
746
- audio_opt.append(self.vc(model, net_g, sid, audio_slice, pitch_slice, pitchf_slice, times, index, big_npy, index_rate, version, protect)[self.t_pad_tgt : -self.t_pad_tgt])
747
- s = t
748
- pbar.update(1)
749
- pbar.refresh()
750
-
751
- audio_slice = audio_pad[t:]
752
- pitch_slice = pitch[:, t // self.window:] if if_f0 and t is not None else pitch
753
- pitchf_slice = pitchf[:, t // self.window:] if if_f0 and t is not None else pitchf
754
- audio_opt.append(self.vc(model, net_g, sid, audio_slice, pitch_slice, pitchf_slice, times, index, big_npy, index_rate, version, protect)[self.t_pad_tgt : -self.t_pad_tgt])
755
-
756
- audio_opt = np.concatenate(audio_opt)
757
- if rms_mix_rate != 1:
758
- audio_opt = change_rms(audio, 16000, audio_opt, tgt_sr, rms_mix_rate)
759
- if tgt_sr != resample_sr >= 16000:
760
- audio_opt = librosa.resample(
761
- audio_opt, orig_sr=tgt_sr, target_sr=resample_sr
762
- )
763
- audio_max = np.abs(audio_opt).max() / 0.99
764
- max_int16 = 32768
765
- if audio_max > 1:
766
- max_int16 /= audio_max
767
- audio_opt = (audio_opt * max_int16).astype(np.int16)
768
- del pitch, pitchf, sid
769
- if torch.cuda.is_available():
770
- torch.cuda.empty_cache()
771
-
772
- print("Returning completed audio...")
773
- return audio_opt