|
import os |
|
import shutil |
|
import gc |
|
import torch |
|
from multiprocessing import cpu_count |
|
from lib.modules import VC |
|
from lib.split_audio import split_silence_nonsilent, adjust_audio_lengths, combine_silence_nonsilent |
|
|
|
class Configs: |
|
def __init__(self, device, is_half): |
|
self.device = device |
|
self.is_half = is_half |
|
self.n_cpu = 0 |
|
self.gpu_name = None |
|
self.gpu_mem = None |
|
self.x_pad, self.x_query, self.x_center, self.x_max = self.device_config() |
|
|
|
def device_config(self) -> tuple: |
|
if torch.cuda.is_available(): |
|
i_device = int(self.device.split(":")[-1]) |
|
self.gpu_name = torch.cuda.get_device_name(i_device) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
elif torch.backends.mps.is_available(): |
|
print("No supported N-card found, use MPS for inference") |
|
self.device = "mps" |
|
else: |
|
print("No supported N-card found, use CPU for inference") |
|
self.device = "cpu" |
|
|
|
if self.n_cpu == 0: |
|
self.n_cpu = cpu_count() |
|
|
|
if self.is_half: |
|
|
|
x_pad = 3 |
|
x_query = 10 |
|
x_center = 60 |
|
x_max = 65 |
|
else: |
|
|
|
x_pad = 1 |
|
x_query = 6 |
|
x_center = 38 |
|
x_max = 41 |
|
|
|
if self.gpu_mem != None and self.gpu_mem <= 4: |
|
x_pad = 1 |
|
x_query = 5 |
|
x_center = 30 |
|
x_max = 32 |
|
|
|
return x_pad, x_query, x_center, x_max |
|
|
|
def get_model(voice_model): |
|
model_dir = os.path.join(os.getcwd(), "models", voice_model) |
|
model_filename, index_filename = None, None |
|
for file in os.listdir(model_dir): |
|
ext = os.path.splitext(file)[1] |
|
if ext == '.pth': |
|
model_filename = file |
|
if ext == '.index': |
|
index_filename = file |
|
|
|
if model_filename is None: |
|
print(f'No model file exists in {models_dir}.') |
|
return None, None |
|
|
|
return os.path.join(model_dir, model_filename), os.path.join(model_dir, index_filename) if index_filename else '' |
|
|
|
def infer_audio( |
|
model_name, |
|
audio_path, |
|
f0_change=0, |
|
f0_method="rmvpe+", |
|
min_pitch="50", |
|
max_pitch="1100", |
|
crepe_hop_length=128, |
|
index_rate=0.75, |
|
filter_radius=3, |
|
rms_mix_rate=0.25, |
|
protect=0.33, |
|
split_infer=False, |
|
min_silence=500, |
|
silence_threshold=-50, |
|
seek_step=1, |
|
keep_silence=100, |
|
do_formant=False, |
|
quefrency=0, |
|
timbre=1, |
|
f0_autotune=False, |
|
audio_format="wav", |
|
resample_sr=0, |
|
hubert_model_path="assets/hubert/hubert_base.pt", |
|
rmvpe_model_path="assets/rmvpe/rmvpe.pt", |
|
fcpe_model_path="assets/fcpe/fcpe.pt" |
|
): |
|
os.environ["rmvpe_model_path"] = rmvpe_model_path |
|
os.environ["fcpe_model_path"] = fcpe_model_path |
|
configs = Configs('cuda:0', False) |
|
vc = VC(configs) |
|
pth_path, index_path = get_model(model_name) |
|
vc_data = vc.get_vc(pth_path, protect, 0.5) |
|
|
|
if split_infer: |
|
inferred_files = [] |
|
temp_dir = os.path.join(os.getcwd(), "seperate", "temp") |
|
os.makedirs(temp_dir, exist_ok=True) |
|
print("Splitting audio to silence and nonsilent segments.") |
|
silence_files, nonsilent_files = split_silence_nonsilent(audio_path, min_silence, silence_threshold, seek_step, keep_silence) |
|
print(f"Total silence segments: {len(silence_files)}.\nTotal nonsilent segments: {len(nonsilent_files)}.") |
|
for i, nonsilent_file in enumerate(nonsilent_files): |
|
print(f"Inferring nonsilent audio {i+1}") |
|
inference_info, audio_data, output_path = vc.vc_single( |
|
0, |
|
nonsilent_file, |
|
f0_change, |
|
f0_method, |
|
index_path, |
|
index_path, |
|
index_rate, |
|
filter_radius, |
|
resample_sr, |
|
rms_mix_rate, |
|
protect, |
|
audio_format, |
|
crepe_hop_length, |
|
do_formant, |
|
quefrency, |
|
timbre, |
|
min_pitch, |
|
max_pitch, |
|
f0_autotune, |
|
hubert_model_path |
|
) |
|
if inference_info[0] == "Success.": |
|
print("Inference ran successfully.") |
|
print(inference_info[1]) |
|
print("Times:\nnpy: %.2fs f0: %.2fs infer: %.2fs\nTotal time: %.2fs" % (*inference_info[2],)) |
|
else: |
|
print(f"An error occurred while processing.\n{inference_info[0]}") |
|
return None |
|
inferred_files.append(output_path) |
|
print("Adjusting inferred audio lengths.") |
|
adjusted_inferred_files = adjust_audio_lengths(nonsilent_files, inferred_files) |
|
print("Combining silence and inferred audios.") |
|
output_count = 1 |
|
while True: |
|
output_path = os.path.join(os.getcwd(), "output", f"{os.path.splitext(os.path.basename(audio_path))[0]}{model_name}{f0_method.capitalize()}_{output_count}.{audio_format}") |
|
if not os.path.exists(output_path): |
|
break |
|
output_count += 1 |
|
output_path = combine_silence_nonsilent(silence_files, adjusted_inferred_files, keep_silence, output_path) |
|
[shutil.move(inferred_file, temp_dir) for inferred_file in inferred_files] |
|
shutil.rmtree(temp_dir) |
|
else: |
|
inference_info, audio_data, output_path = vc.vc_single( |
|
0, |
|
audio_path, |
|
f0_change, |
|
f0_method, |
|
index_path, |
|
index_path, |
|
index_rate, |
|
filter_radius, |
|
resample_sr, |
|
rms_mix_rate, |
|
protect, |
|
audio_format, |
|
crepe_hop_length, |
|
do_formant, |
|
quefrency, |
|
timbre, |
|
min_pitch, |
|
max_pitch, |
|
f0_autotune, |
|
hubert_model_path |
|
) |
|
if inference_info[0] == "Success.": |
|
print("Inference ran successfully.") |
|
print(inference_info[1]) |
|
print("Times:\nnpy: %.2fs f0: %.2fs infer: %.2fs\nTotal time: %.2fs" % (*inference_info[2],)) |
|
else: |
|
print(f"An error occurred while processing.\n{inference_info[0]}") |
|
del configs, vc |
|
gc.collect() |
|
return inference_info[0] |
|
|
|
del configs, vc |
|
gc.collect() |
|
return output_path |