|
from typing import Union |
|
|
|
import torch.nn.functional as F |
|
import numpy as np |
|
import torch |
|
import torch.nn as nn |
|
from torch.nn.utils import weight_norm |
|
from torchaudio.transforms import Resample |
|
import os |
|
import librosa |
|
import soundfile as sf |
|
import torch.utils.data |
|
from librosa.filters import mel as librosa_mel_fn |
|
import math |
|
from functools import partial |
|
|
|
from einops import rearrange, repeat |
|
from local_attention import LocalAttention |
|
from torch import nn |
|
|
|
os.environ["LRU_CACHE_CAPACITY"] = "3" |
|
|
|
def load_wav_to_torch(full_path, target_sr=None, return_empty_on_exception=False): |
|
sampling_rate = None |
|
try: |
|
data, sampling_rate = sf.read(full_path, always_2d=True) |
|
except Exception as ex: |
|
print(f"'{full_path}' failed to load.\nException:") |
|
print(ex) |
|
if return_empty_on_exception: |
|
return [], sampling_rate or target_sr or 48000 |
|
else: |
|
raise Exception(ex) |
|
|
|
if len(data.shape) > 1: |
|
data = data[:, 0] |
|
assert len(data) > 2 |
|
|
|
if np.issubdtype(data.dtype, np.integer): |
|
max_mag = -np.iinfo(data.dtype).min |
|
else: |
|
max_mag = max(np.amax(data), -np.amin(data)) |
|
max_mag = (2**31)+1 if max_mag > (2**15) else ((2**15)+1 if max_mag > 1.01 else 1.0) |
|
|
|
data = torch.FloatTensor(data.astype(np.float32))/max_mag |
|
|
|
if (torch.isinf(data) | torch.isnan(data)).any() and return_empty_on_exception: |
|
return [], sampling_rate or target_sr or 48000 |
|
if target_sr is not None and sampling_rate != target_sr: |
|
data = torch.from_numpy(librosa.core.resample(data.numpy(), orig_sr=sampling_rate, target_sr=target_sr)) |
|
sampling_rate = target_sr |
|
|
|
return data, sampling_rate |
|
|
|
def dynamic_range_compression(x, C=1, clip_val=1e-5): |
|
return np.log(np.clip(x, a_min=clip_val, a_max=None) * C) |
|
|
|
def dynamic_range_decompression(x, C=1): |
|
return np.exp(x) / C |
|
|
|
def dynamic_range_compression_torch(x, C=1, clip_val=1e-5): |
|
return torch.log(torch.clamp(x, min=clip_val) * C) |
|
|
|
def dynamic_range_decompression_torch(x, C=1): |
|
return torch.exp(x) / C |
|
|
|
class STFT(): |
|
def __init__(self, sr=22050, n_mels=80, n_fft=1024, win_size=1024, hop_length=256, fmin=20, fmax=11025, clip_val=1e-5): |
|
self.target_sr = sr |
|
|
|
self.n_mels = n_mels |
|
self.n_fft = n_fft |
|
self.win_size = win_size |
|
self.hop_length = hop_length |
|
self.fmin = fmin |
|
self.fmax = fmax |
|
self.clip_val = clip_val |
|
self.mel_basis = {} |
|
self.hann_window = {} |
|
|
|
def get_mel(self, y, keyshift=0, speed=1, center=False, train=False): |
|
sampling_rate = self.target_sr |
|
n_mels = self.n_mels |
|
n_fft = self.n_fft |
|
win_size = self.win_size |
|
hop_length = self.hop_length |
|
fmin = self.fmin |
|
fmax = self.fmax |
|
clip_val = self.clip_val |
|
|
|
factor = 2 ** (keyshift / 12) |
|
n_fft_new = int(np.round(n_fft * factor)) |
|
win_size_new = int(np.round(win_size * factor)) |
|
hop_length_new = int(np.round(hop_length * speed)) |
|
if not train: |
|
mel_basis = self.mel_basis |
|
hann_window = self.hann_window |
|
else: |
|
mel_basis = {} |
|
hann_window = {} |
|
|
|
if torch.min(y) < -1.: |
|
print('min value is ', torch.min(y)) |
|
if torch.max(y) > 1.: |
|
print('max value is ', torch.max(y)) |
|
|
|
mel_basis_key = str(fmax)+'_'+str(y.device) |
|
if mel_basis_key not in mel_basis: |
|
mel = librosa_mel_fn(sr=sampling_rate, n_fft=n_fft, n_mels=n_mels, fmin=fmin, fmax=fmax) |
|
mel_basis[mel_basis_key] = torch.from_numpy(mel).float().to(y.device) |
|
|
|
keyshift_key = str(keyshift)+'_'+str(y.device) |
|
if keyshift_key not in hann_window: |
|
hann_window[keyshift_key] = torch.hann_window(win_size_new).to(y.device) |
|
|
|
pad_left = (win_size_new - hop_length_new) //2 |
|
pad_right = max((win_size_new- hop_length_new + 1) //2, win_size_new - y.size(-1) - pad_left) |
|
if pad_right < y.size(-1): |
|
mode = 'reflect' |
|
else: |
|
mode = 'constant' |
|
y = torch.nn.functional.pad(y.unsqueeze(1), (pad_left, pad_right), mode = mode) |
|
y = y.squeeze(1) |
|
|
|
spec = torch.stft(y, n_fft_new, hop_length=hop_length_new, win_length=win_size_new, window=hann_window[keyshift_key], |
|
center=center, pad_mode='reflect', normalized=False, onesided=True, return_complex=True) |
|
spec = torch.sqrt(spec.real.pow(2) + spec.imag.pow(2) + (1e-9)) |
|
if keyshift != 0: |
|
size = n_fft // 2 + 1 |
|
resize = spec.size(1) |
|
if resize < size: |
|
spec = F.pad(spec, (0, 0, 0, size-resize)) |
|
spec = spec[:, :size, :] * win_size / win_size_new |
|
spec = torch.matmul(mel_basis[mel_basis_key], spec) |
|
spec = dynamic_range_compression_torch(spec, clip_val=clip_val) |
|
return spec |
|
|
|
def __call__(self, audiopath): |
|
audio, sr = load_wav_to_torch(audiopath, target_sr=self.target_sr) |
|
spect = self.get_mel(audio.unsqueeze(0)).squeeze(0) |
|
return spect |
|
|
|
stft = STFT() |
|
|
|
|
|
|
|
def softmax_kernel(data, *, projection_matrix, is_query, normalize_data=True, eps=1e-4, device = None): |
|
b, h, *_ = data.shape |
|
|
|
|
|
|
|
data_normalizer = (data.shape[-1] ** -0.25) if normalize_data else 1. |
|
|
|
|
|
|
|
ratio = (projection_matrix.shape[0] ** -0.5) |
|
|
|
projection = repeat(projection_matrix, 'j d -> b h j d', b = b, h = h) |
|
projection = projection.type_as(data) |
|
|
|
|
|
data_dash = torch.einsum('...id,...jd->...ij', (data_normalizer * data), projection) |
|
|
|
|
|
|
|
diag_data = data ** 2 |
|
diag_data = torch.sum(diag_data, dim=-1) |
|
diag_data = (diag_data / 2.0) * (data_normalizer ** 2) |
|
diag_data = diag_data.unsqueeze(dim=-1) |
|
|
|
|
|
if is_query: |
|
data_dash = ratio * ( |
|
torch.exp(data_dash - diag_data - |
|
torch.max(data_dash, dim=-1, keepdim=True).values) + eps) |
|
else: |
|
data_dash = ratio * ( |
|
torch.exp(data_dash - diag_data + eps)) |
|
|
|
return data_dash.type_as(data) |
|
|
|
def orthogonal_matrix_chunk(cols, qr_uniform_q = False, device = None): |
|
unstructured_block = torch.randn((cols, cols), device = device) |
|
q, r = torch.linalg.qr(unstructured_block.cpu(), mode='reduced') |
|
q, r = map(lambda t: t.to(device), (q, r)) |
|
|
|
|
|
|
|
if qr_uniform_q: |
|
d = torch.diag(r, 0) |
|
q *= d.sign() |
|
return q.t() |
|
def exists(val): |
|
return val is not None |
|
|
|
def empty(tensor): |
|
return tensor.numel() == 0 |
|
|
|
def default(val, d): |
|
return val if exists(val) else d |
|
|
|
def cast_tuple(val): |
|
return (val,) if not isinstance(val, tuple) else val |
|
|
|
class PCmer(nn.Module): |
|
"""The encoder that is used in the Transformer model.""" |
|
|
|
def __init__(self, |
|
num_layers, |
|
num_heads, |
|
dim_model, |
|
dim_keys, |
|
dim_values, |
|
residual_dropout, |
|
attention_dropout): |
|
super().__init__() |
|
self.num_layers = num_layers |
|
self.num_heads = num_heads |
|
self.dim_model = dim_model |
|
self.dim_values = dim_values |
|
self.dim_keys = dim_keys |
|
self.residual_dropout = residual_dropout |
|
self.attention_dropout = attention_dropout |
|
|
|
self._layers = nn.ModuleList([_EncoderLayer(self) for _ in range(num_layers)]) |
|
|
|
|
|
|
|
def forward(self, phone, mask=None): |
|
|
|
|
|
for (i, layer) in enumerate(self._layers): |
|
phone = layer(phone, mask) |
|
|
|
return phone |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class _EncoderLayer(nn.Module): |
|
"""One layer of the encoder. |
|
|
|
Attributes: |
|
attn: (:class:`mha.MultiHeadAttention`): The attention mechanism that is used to read the input sequence. |
|
feed_forward (:class:`ffl.FeedForwardLayer`): The feed-forward layer on top of the attention mechanism. |
|
""" |
|
|
|
def __init__(self, parent: PCmer): |
|
"""Creates a new instance of ``_EncoderLayer``. |
|
|
|
Args: |
|
parent (Encoder): The encoder that the layers is created for. |
|
""" |
|
super().__init__() |
|
|
|
|
|
self.conformer = ConformerConvModule(parent.dim_model) |
|
self.norm = nn.LayerNorm(parent.dim_model) |
|
self.dropout = nn.Dropout(parent.residual_dropout) |
|
|
|
|
|
self.attn = SelfAttention(dim = parent.dim_model, |
|
heads = parent.num_heads, |
|
causal = False) |
|
|
|
|
|
|
|
def forward(self, phone, mask=None): |
|
|
|
|
|
phone = phone + (self.attn(self.norm(phone), mask=mask)) |
|
|
|
phone = phone + (self.conformer(phone)) |
|
|
|
return phone |
|
|
|
def calc_same_padding(kernel_size): |
|
pad = kernel_size // 2 |
|
return (pad, pad - (kernel_size + 1) % 2) |
|
|
|
|
|
|
|
class Swish(nn.Module): |
|
def forward(self, x): |
|
return x * x.sigmoid() |
|
|
|
class Transpose(nn.Module): |
|
def __init__(self, dims): |
|
super().__init__() |
|
assert len(dims) == 2, 'dims must be a tuple of two dimensions' |
|
self.dims = dims |
|
|
|
def forward(self, x): |
|
return x.transpose(*self.dims) |
|
|
|
class GLU(nn.Module): |
|
def __init__(self, dim): |
|
super().__init__() |
|
self.dim = dim |
|
|
|
def forward(self, x): |
|
out, gate = x.chunk(2, dim=self.dim) |
|
return out * gate.sigmoid() |
|
|
|
class DepthWiseConv1d(nn.Module): |
|
def __init__(self, chan_in, chan_out, kernel_size, padding): |
|
super().__init__() |
|
self.padding = padding |
|
self.conv = nn.Conv1d(chan_in, chan_out, kernel_size, groups = chan_in) |
|
|
|
def forward(self, x): |
|
x = F.pad(x, self.padding) |
|
return self.conv(x) |
|
|
|
class ConformerConvModule(nn.Module): |
|
def __init__( |
|
self, |
|
dim, |
|
causal = False, |
|
expansion_factor = 2, |
|
kernel_size = 31, |
|
dropout = 0.): |
|
super().__init__() |
|
|
|
inner_dim = dim * expansion_factor |
|
padding = calc_same_padding(kernel_size) if not causal else (kernel_size - 1, 0) |
|
|
|
self.net = nn.Sequential( |
|
nn.LayerNorm(dim), |
|
Transpose((1, 2)), |
|
nn.Conv1d(dim, inner_dim * 2, 1), |
|
GLU(dim=1), |
|
DepthWiseConv1d(inner_dim, inner_dim, kernel_size = kernel_size, padding = padding), |
|
|
|
Swish(), |
|
nn.Conv1d(inner_dim, dim, 1), |
|
Transpose((1, 2)), |
|
nn.Dropout(dropout) |
|
) |
|
|
|
def forward(self, x): |
|
return self.net(x) |
|
|
|
def linear_attention(q, k, v): |
|
if v is None: |
|
|
|
out = torch.einsum('...ed,...nd->...ne', k, q) |
|
return out |
|
|
|
else: |
|
k_cumsum = k.sum(dim = -2) |
|
|
|
D_inv = 1. / (torch.einsum('...nd,...d->...n', q, k_cumsum.type_as(q)) + 1e-8) |
|
|
|
context = torch.einsum('...nd,...ne->...de', k, v) |
|
|
|
out = torch.einsum('...de,...nd,...n->...ne', context, q, D_inv) |
|
return out |
|
|
|
def gaussian_orthogonal_random_matrix(nb_rows, nb_columns, scaling = 0, qr_uniform_q = False, device = None): |
|
nb_full_blocks = int(nb_rows / nb_columns) |
|
|
|
block_list = [] |
|
|
|
for _ in range(nb_full_blocks): |
|
q = orthogonal_matrix_chunk(nb_columns, qr_uniform_q = qr_uniform_q, device = device) |
|
block_list.append(q) |
|
|
|
|
|
|
|
remaining_rows = nb_rows - nb_full_blocks * nb_columns |
|
|
|
if remaining_rows > 0: |
|
q = orthogonal_matrix_chunk(nb_columns, qr_uniform_q = qr_uniform_q, device = device) |
|
|
|
block_list.append(q[:remaining_rows]) |
|
|
|
final_matrix = torch.cat(block_list) |
|
|
|
if scaling == 0: |
|
multiplier = torch.randn((nb_rows, nb_columns), device = device).norm(dim = 1) |
|
elif scaling == 1: |
|
multiplier = math.sqrt((float(nb_columns))) * torch.ones((nb_rows,), device = device) |
|
else: |
|
raise ValueError(f'Invalid scaling {scaling}') |
|
|
|
return torch.diag(multiplier) @ final_matrix |
|
|
|
class FastAttention(nn.Module): |
|
def __init__(self, dim_heads, nb_features = None, ortho_scaling = 0, causal = False, generalized_attention = False, kernel_fn = nn.ReLU(), qr_uniform_q = False, no_projection = False): |
|
super().__init__() |
|
nb_features = default(nb_features, int(dim_heads * math.log(dim_heads))) |
|
|
|
self.dim_heads = dim_heads |
|
self.nb_features = nb_features |
|
self.ortho_scaling = ortho_scaling |
|
|
|
self.create_projection = partial(gaussian_orthogonal_random_matrix, nb_rows = self.nb_features, nb_columns = dim_heads, scaling = ortho_scaling, qr_uniform_q = qr_uniform_q) |
|
projection_matrix = self.create_projection() |
|
self.register_buffer('projection_matrix', projection_matrix) |
|
|
|
self.generalized_attention = generalized_attention |
|
self.kernel_fn = kernel_fn |
|
|
|
|
|
|
|
self.no_projection = no_projection |
|
|
|
self.causal = causal |
|
|
|
@torch.no_grad() |
|
def redraw_projection_matrix(self): |
|
projections = self.create_projection() |
|
self.projection_matrix.copy_(projections) |
|
del projections |
|
|
|
def forward(self, q, k, v): |
|
device = q.device |
|
|
|
if self.no_projection: |
|
q = q.softmax(dim = -1) |
|
k = torch.exp(k) if self.causal else k.softmax(dim = -2) |
|
else: |
|
create_kernel = partial(softmax_kernel, projection_matrix = self.projection_matrix, device = device) |
|
|
|
q = create_kernel(q, is_query = True) |
|
k = create_kernel(k, is_query = False) |
|
|
|
attn_fn = linear_attention if not self.causal else self.causal_linear_fn |
|
if v is None: |
|
out = attn_fn(q, k, None) |
|
return out |
|
else: |
|
out = attn_fn(q, k, v) |
|
return out |
|
class SelfAttention(nn.Module): |
|
def __init__(self, dim, causal = False, heads = 8, dim_head = 64, local_heads = 0, local_window_size = 256, nb_features = None, feature_redraw_interval = 1000, generalized_attention = False, kernel_fn = nn.ReLU(), qr_uniform_q = False, dropout = 0., no_projection = False): |
|
super().__init__() |
|
assert dim % heads == 0, 'dimension must be divisible by number of heads' |
|
dim_head = default(dim_head, dim // heads) |
|
inner_dim = dim_head * heads |
|
self.fast_attention = FastAttention(dim_head, nb_features, causal = causal, generalized_attention = generalized_attention, kernel_fn = kernel_fn, qr_uniform_q = qr_uniform_q, no_projection = no_projection) |
|
|
|
self.heads = heads |
|
self.global_heads = heads - local_heads |
|
self.local_attn = LocalAttention(window_size = local_window_size, causal = causal, autopad = True, dropout = dropout, look_forward = int(not causal), rel_pos_emb_config = (dim_head, local_heads)) if local_heads > 0 else None |
|
|
|
|
|
|
|
|
|
|
|
|
|
self.to_q = nn.Linear(dim, inner_dim) |
|
self.to_k = nn.Linear(dim, inner_dim) |
|
self.to_v = nn.Linear(dim, inner_dim) |
|
self.to_out = nn.Linear(inner_dim, dim) |
|
self.dropout = nn.Dropout(dropout) |
|
|
|
@torch.no_grad() |
|
def redraw_projection_matrix(self): |
|
self.fast_attention.redraw_projection_matrix() |
|
|
|
|
|
def forward(self, x, context = None, mask = None, context_mask = None, name=None, inference=False, **kwargs): |
|
_, _, _, h, gh = *x.shape, self.heads, self.global_heads |
|
|
|
cross_attend = exists(context) |
|
|
|
context = default(context, x) |
|
context_mask = default(context_mask, mask) if not cross_attend else context_mask |
|
|
|
q, k, v = self.to_q(x), self.to_k(context), self.to_v(context) |
|
|
|
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = h), (q, k, v)) |
|
(q, lq), (k, lk), (v, lv) = map(lambda t: (t[:, :gh], t[:, gh:]), (q, k, v)) |
|
|
|
attn_outs = [] |
|
|
|
|
|
if not empty(q): |
|
if exists(context_mask): |
|
global_mask = context_mask[:, None, :, None] |
|
v.masked_fill_(~global_mask, 0.) |
|
if cross_attend: |
|
pass |
|
|
|
|
|
|
|
else: |
|
out = self.fast_attention(q, k, v) |
|
attn_outs.append(out) |
|
|
|
if not empty(lq): |
|
assert not cross_attend, 'local attention is not compatible with cross attention' |
|
out = self.local_attn(lq, lk, lv, input_mask = mask) |
|
attn_outs.append(out) |
|
|
|
out = torch.cat(attn_outs, dim = 1) |
|
out = rearrange(out, 'b h n d -> b n (h d)') |
|
out = self.to_out(out) |
|
return self.dropout(out) |
|
|
|
def l2_regularization(model, l2_alpha): |
|
l2_loss = [] |
|
for module in model.modules(): |
|
if type(module) is nn.Conv2d: |
|
l2_loss.append((module.weight ** 2).sum() / 2.0) |
|
return l2_alpha * sum(l2_loss) |
|
|
|
|
|
class FCPE(nn.Module): |
|
def __init__( |
|
self, |
|
input_channel=128, |
|
out_dims=360, |
|
n_layers=12, |
|
n_chans=512, |
|
use_siren=False, |
|
use_full=False, |
|
loss_mse_scale=10, |
|
loss_l2_regularization=False, |
|
loss_l2_regularization_scale=1, |
|
loss_grad1_mse=False, |
|
loss_grad1_mse_scale=1, |
|
f0_max=1975.5, |
|
f0_min=32.70, |
|
confidence=False, |
|
threshold=0.05, |
|
use_input_conv=True |
|
): |
|
super().__init__() |
|
if use_siren is True: |
|
raise ValueError("Siren is not supported yet.") |
|
if use_full is True: |
|
raise ValueError("Full model is not supported yet.") |
|
|
|
self.loss_mse_scale = loss_mse_scale if (loss_mse_scale is not None) else 10 |
|
self.loss_l2_regularization = loss_l2_regularization if (loss_l2_regularization is not None) else False |
|
self.loss_l2_regularization_scale = loss_l2_regularization_scale if (loss_l2_regularization_scale |
|
is not None) else 1 |
|
self.loss_grad1_mse = loss_grad1_mse if (loss_grad1_mse is not None) else False |
|
self.loss_grad1_mse_scale = loss_grad1_mse_scale if (loss_grad1_mse_scale is not None) else 1 |
|
self.f0_max = f0_max if (f0_max is not None) else 1975.5 |
|
self.f0_min = f0_min if (f0_min is not None) else 32.70 |
|
self.confidence = confidence if (confidence is not None) else False |
|
self.threshold = threshold if (threshold is not None) else 0.05 |
|
self.use_input_conv = use_input_conv if (use_input_conv is not None) else True |
|
|
|
self.cent_table_b = torch.Tensor( |
|
np.linspace(self.f0_to_cent(torch.Tensor([f0_min]))[0], self.f0_to_cent(torch.Tensor([f0_max]))[0], |
|
out_dims)) |
|
self.register_buffer("cent_table", self.cent_table_b) |
|
|
|
|
|
_leaky = nn.LeakyReLU() |
|
self.stack = nn.Sequential( |
|
nn.Conv1d(input_channel, n_chans, 3, 1, 1), |
|
nn.GroupNorm(4, n_chans), |
|
_leaky, |
|
nn.Conv1d(n_chans, n_chans, 3, 1, 1)) |
|
|
|
|
|
self.decoder = PCmer( |
|
num_layers=n_layers, |
|
num_heads=8, |
|
dim_model=n_chans, |
|
dim_keys=n_chans, |
|
dim_values=n_chans, |
|
residual_dropout=0.1, |
|
attention_dropout=0.1) |
|
self.norm = nn.LayerNorm(n_chans) |
|
|
|
|
|
self.n_out = out_dims |
|
self.dense_out = weight_norm( |
|
nn.Linear(n_chans, self.n_out)) |
|
|
|
def forward(self, mel, infer=True, gt_f0=None, return_hz_f0=False, cdecoder = "local_argmax"): |
|
""" |
|
input: |
|
B x n_frames x n_unit |
|
return: |
|
dict of B x n_frames x feat |
|
""" |
|
if cdecoder == "argmax": |
|
self.cdecoder = self.cents_decoder |
|
elif cdecoder == "local_argmax": |
|
self.cdecoder = self.cents_local_decoder |
|
if self.use_input_conv: |
|
x = self.stack(mel.transpose(1, 2)).transpose(1, 2) |
|
else: |
|
x = mel |
|
x = self.decoder(x) |
|
x = self.norm(x) |
|
x = self.dense_out(x) |
|
x = torch.sigmoid(x) |
|
if not infer: |
|
gt_cent_f0 = self.f0_to_cent(gt_f0) |
|
gt_cent_f0 = self.gaussian_blurred_cent(gt_cent_f0) |
|
loss_all = self.loss_mse_scale * F.binary_cross_entropy(x, gt_cent_f0) |
|
|
|
if self.loss_l2_regularization: |
|
loss_all = loss_all + l2_regularization(model=self, l2_alpha=self.loss_l2_regularization_scale) |
|
x = loss_all |
|
if infer: |
|
x = self.cdecoder(x) |
|
x = self.cent_to_f0(x) |
|
if not return_hz_f0: |
|
x = (1 + x / 700).log() |
|
return x |
|
|
|
def cents_decoder(self, y, mask=True): |
|
B, N, _ = y.size() |
|
ci = self.cent_table[None, None, :].expand(B, N, -1) |
|
rtn = torch.sum(ci * y, dim=-1, keepdim=True) / torch.sum(y, dim=-1, keepdim=True) |
|
if mask: |
|
confident = torch.max(y, dim=-1, keepdim=True)[0] |
|
confident_mask = torch.ones_like(confident) |
|
confident_mask[confident <= self.threshold] = float("-INF") |
|
rtn = rtn * confident_mask |
|
if self.confidence: |
|
return rtn, confident |
|
else: |
|
return rtn |
|
|
|
def cents_local_decoder(self, y, mask=True): |
|
B, N, _ = y.size() |
|
ci = self.cent_table[None, None, :].expand(B, N, -1) |
|
confident, max_index = torch.max(y, dim=-1, keepdim=True) |
|
local_argmax_index = torch.arange(0,9).to(max_index.device) + (max_index - 4) |
|
local_argmax_index[local_argmax_index<0] = 0 |
|
local_argmax_index[local_argmax_index>=self.n_out] = self.n_out - 1 |
|
ci_l = torch.gather(ci,-1,local_argmax_index) |
|
y_l = torch.gather(y,-1,local_argmax_index) |
|
rtn = torch.sum(ci_l * y_l, dim=-1, keepdim=True) / torch.sum(y_l, dim=-1, keepdim=True) |
|
if mask: |
|
confident_mask = torch.ones_like(confident) |
|
confident_mask[confident <= self.threshold] = float("-INF") |
|
rtn = rtn * confident_mask |
|
if self.confidence: |
|
return rtn, confident |
|
else: |
|
return rtn |
|
|
|
def cent_to_f0(self, cent): |
|
return 10. * 2 ** (cent / 1200.) |
|
|
|
def f0_to_cent(self, f0): |
|
return 1200. * torch.log2(f0 / 10.) |
|
|
|
def gaussian_blurred_cent(self, cents): |
|
mask = (cents > 0.1) & (cents < (1200. * np.log2(self.f0_max / 10.))) |
|
B, N, _ = cents.size() |
|
ci = self.cent_table[None, None, :].expand(B, N, -1) |
|
return torch.exp(-torch.square(ci - cents) / 1250) * mask.float() |
|
|
|
|
|
class FCPEInfer: |
|
def __init__(self, model_path, device=None, dtype=torch.float32): |
|
if device is None: |
|
device = 'cuda' if torch.cuda.is_available() else 'cpu' |
|
self.device = device |
|
ckpt = torch.load(model_path, map_location=torch.device(self.device)) |
|
self.args = DotDict(ckpt["config"]) |
|
self.dtype = dtype |
|
model = FCPE( |
|
input_channel=self.args.model.input_channel, |
|
out_dims=self.args.model.out_dims, |
|
n_layers=self.args.model.n_layers, |
|
n_chans=self.args.model.n_chans, |
|
use_siren=self.args.model.use_siren, |
|
use_full=self.args.model.use_full, |
|
loss_mse_scale=self.args.loss.loss_mse_scale, |
|
loss_l2_regularization=self.args.loss.loss_l2_regularization, |
|
loss_l2_regularization_scale=self.args.loss.loss_l2_regularization_scale, |
|
loss_grad1_mse=self.args.loss.loss_grad1_mse, |
|
loss_grad1_mse_scale=self.args.loss.loss_grad1_mse_scale, |
|
f0_max=self.args.model.f0_max, |
|
f0_min=self.args.model.f0_min, |
|
confidence=self.args.model.confidence, |
|
) |
|
model.to(self.device).to(self.dtype) |
|
model.load_state_dict(ckpt['model']) |
|
model.eval() |
|
self.model = model |
|
self.wav2mel = Wav2Mel(self.args, dtype=self.dtype, device=self.device) |
|
|
|
@torch.no_grad() |
|
def __call__(self, audio, sr, threshold=0.05): |
|
self.model.threshold = threshold |
|
audio = audio[None,:] |
|
mel = self.wav2mel(audio=audio, sample_rate=sr).to(self.dtype) |
|
f0 = self.model(mel=mel, infer=True, return_hz_f0=True) |
|
return f0 |
|
|
|
|
|
class Wav2Mel: |
|
|
|
def __init__(self, args, device=None, dtype=torch.float32): |
|
|
|
self.sampling_rate = args.mel.sampling_rate |
|
self.hop_size = args.mel.hop_size |
|
if device is None: |
|
device = 'cuda' if torch.cuda.is_available() else 'cpu' |
|
self.device = device |
|
self.dtype = dtype |
|
self.stft = STFT( |
|
args.mel.sampling_rate, |
|
args.mel.num_mels, |
|
args.mel.n_fft, |
|
args.mel.win_size, |
|
args.mel.hop_size, |
|
args.mel.fmin, |
|
args.mel.fmax |
|
) |
|
self.resample_kernel = {} |
|
|
|
def extract_nvstft(self, audio, keyshift=0, train=False): |
|
mel = self.stft.get_mel(audio, keyshift=keyshift, train=train).transpose(1, 2) |
|
return mel |
|
|
|
def extract_mel(self, audio, sample_rate, keyshift=0, train=False): |
|
audio = audio.to(self.dtype).to(self.device) |
|
|
|
if sample_rate == self.sampling_rate: |
|
audio_res = audio |
|
else: |
|
key_str = str(sample_rate) |
|
if key_str not in self.resample_kernel: |
|
self.resample_kernel[key_str] = Resample(sample_rate, self.sampling_rate, lowpass_filter_width=128) |
|
self.resample_kernel[key_str] = self.resample_kernel[key_str].to(self.dtype).to(self.device) |
|
audio_res = self.resample_kernel[key_str](audio) |
|
|
|
|
|
mel = self.extract_nvstft(audio_res, keyshift=keyshift, train=train) |
|
n_frames = int(audio.shape[1] // self.hop_size) + 1 |
|
if n_frames > int(mel.shape[1]): |
|
mel = torch.cat((mel, mel[:, -1:, :]), 1) |
|
if n_frames < int(mel.shape[1]): |
|
mel = mel[:, :n_frames, :] |
|
return mel |
|
|
|
def __call__(self, audio, sample_rate, keyshift=0, train=False): |
|
return self.extract_mel(audio, sample_rate, keyshift=keyshift, train=train) |
|
|
|
|
|
class DotDict(dict): |
|
def __getattr__(*args): |
|
val = dict.get(*args) |
|
return DotDict(val) if type(val) is dict else val |
|
|
|
__setattr__ = dict.__setitem__ |
|
__delattr__ = dict.__delitem__ |
|
|
|
class F0Predictor(object): |
|
def compute_f0(self,wav,p_len): |
|
''' |
|
input: wav:[signal_length] |
|
p_len:int |
|
output: f0:[signal_length//hop_length] |
|
''' |
|
pass |
|
|
|
def compute_f0_uv(self,wav,p_len): |
|
''' |
|
input: wav:[signal_length] |
|
p_len:int |
|
output: f0:[signal_length//hop_length],uv:[signal_length//hop_length] |
|
''' |
|
pass |
|
|
|
class FCPE(F0Predictor): |
|
def __init__(self, model_path, hop_length=512, f0_min=50, f0_max=1100, dtype=torch.float32, device=None, sampling_rate=44100, |
|
threshold=0.05): |
|
self.fcpe = FCPEInfer(model_path, device=device, dtype=dtype) |
|
self.hop_length = hop_length |
|
self.f0_min = f0_min |
|
self.f0_max = f0_max |
|
if device is None: |
|
self.device = 'cuda' if torch.cuda.is_available() else 'cpu' |
|
else: |
|
self.device = device |
|
self.threshold = threshold |
|
self.sampling_rate = sampling_rate |
|
self.dtype = dtype |
|
self.name = "fcpe" |
|
|
|
def repeat_expand( |
|
self, content: Union[torch.Tensor, np.ndarray], target_len: int, mode: str = "nearest" |
|
): |
|
ndim = content.ndim |
|
|
|
if content.ndim == 1: |
|
content = content[None, None] |
|
elif content.ndim == 2: |
|
content = content[None] |
|
|
|
assert content.ndim == 3 |
|
|
|
is_np = isinstance(content, np.ndarray) |
|
if is_np: |
|
content = torch.from_numpy(content) |
|
|
|
results = torch.nn.functional.interpolate(content, size=target_len, mode=mode) |
|
|
|
if is_np: |
|
results = results.numpy() |
|
|
|
if ndim == 1: |
|
return results[0, 0] |
|
elif ndim == 2: |
|
return results[0] |
|
|
|
def post_process(self, x, sampling_rate, f0, pad_to): |
|
if isinstance(f0, np.ndarray): |
|
f0 = torch.from_numpy(f0).float().to(x.device) |
|
|
|
if pad_to is None: |
|
return f0 |
|
|
|
f0 = self.repeat_expand(f0, pad_to) |
|
|
|
vuv_vector = torch.zeros_like(f0) |
|
vuv_vector[f0 > 0.0] = 1.0 |
|
vuv_vector[f0 <= 0.0] = 0.0 |
|
|
|
|
|
nzindex = torch.nonzero(f0).squeeze() |
|
f0 = torch.index_select(f0, dim=0, index=nzindex).cpu().numpy() |
|
time_org = self.hop_length / sampling_rate * nzindex.cpu().numpy() |
|
time_frame = np.arange(pad_to) * self.hop_length / sampling_rate |
|
|
|
vuv_vector = F.interpolate(vuv_vector[None, None, :], size=pad_to)[0][0] |
|
|
|
if f0.shape[0] <= 0: |
|
return torch.zeros(pad_to, dtype=torch.float, device=x.device).cpu().numpy(), vuv_vector.cpu().numpy() |
|
if f0.shape[0] == 1: |
|
return (torch.ones(pad_to, dtype=torch.float, device=x.device) * f0[ |
|
0]).cpu().numpy(), vuv_vector.cpu().numpy() |
|
|
|
|
|
f0 = np.interp(time_frame, time_org, f0, left=f0[0], right=f0[-1]) |
|
|
|
|
|
return f0, vuv_vector.cpu().numpy() |
|
|
|
def compute_f0(self, wav, p_len=None): |
|
x = torch.FloatTensor(wav).to(self.dtype).to(self.device) |
|
if p_len is None: |
|
print("fcpe p_len is None") |
|
p_len = x.shape[0] // self.hop_length |
|
|
|
|
|
f0 = self.fcpe(x, sr=self.sampling_rate, threshold=self.threshold)[0,:,0] |
|
if torch.all(f0 == 0): |
|
rtn = f0.cpu().numpy() if p_len is None else np.zeros(p_len) |
|
return rtn, rtn |
|
return self.post_process(x, self.sampling_rate, f0, p_len)[0] |
|
|
|
def compute_f0_uv(self, wav, p_len=None): |
|
x = torch.FloatTensor(wav).to(self.dtype).to(self.device) |
|
if p_len is None: |
|
p_len = x.shape[0] // self.hop_length |
|
|
|
|
|
f0 = self.fcpe(x, sr=self.sampling_rate, threshold=self.threshold)[0,:,0] |
|
if torch.all(f0 == 0): |
|
rtn = f0.cpu().numpy() if p_len is None else np.zeros(p_len) |
|
return rtn, rtn |
|
return self.post_process(x, self.sampling_rate, f0, p_len) |