File size: 4,073 Bytes
64685a1
 
d6f6457
64685a1
 
d6f6457
64685a1
 
d6f6457
 
 
 
 
e64f18b
 
 
 
5f21a11
e64f18b
 
 
5f21a11
e64f18b
 
64685a1
 
 
 
d6f6457
64685a1
 
 
 
d6f6457
 
64685a1
 
d6f6457
 
 
 
 
 
 
 
 
 
 
64685a1
 
 
d6f6457
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64685a1
 
 
580f879
d6984dd
a4d378f
 
 
 
 
 
 
d6984dd
d6f6457
 
d6984dd
 
6d90905
64685a1
d6f6457
64685a1
d6f6457
64685a1
 
 
 
 
d6f6457
64685a1
d6f6457
64685a1
 
 
d6f6457
 
 
 
64685a1
 
d6f6457
 
 
 
 
 
 
 
64685a1
 
d6f6457
 
 
 
64685a1
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
---
tags:
    - text-generation
license: cc-by-nc-sa-4.0
language:
    - ko
base_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0
pipeline_tag: text-generation
datasets:
    - beomi/KoAlpaca-v1.1a
    - jojo0217/korean_rlhf_dataset
    - kyujinpy/OpenOrca-KO
    - nlpai-lab/kullm-v2
widget:
   - text: >
       <|system|>
 
       You are a chatbot who answers User's questions.
 
       <|user|>
 
       대한민국의 수도는 어디야?
 
       <|assistant|>
---

# **DataVortexTL-1.1B-v0.1**

<img src="./DataVortex.png" alt="DataVortex" style="height: 8em;">

## **Model Details**

### **Base Model**

[TinyLlama/TinyLlama-1.1B-Chat-v1.0](https://huggingface.co./TinyLlama/TinyLlama-1.1B-Chat-v1.0)

### **Trained On**

-   **OS**: Ubuntu 20.04
-   **GPU**: H100 80GB 1ea
-   **transformers**: v4.36.2

### **Dataset**

-   [beomi/KoAlpaca-v1.1a](https://huggingface.co./datasets/beomi/KoAlpaca-v1.1a)
-   [jojo0217/korean_rlhf_dataset](https://huggingface.co./datasets/jojo0217/korean_rlhf_dataset)
-   [kyujinpy/OpenOrca-KO](https://huggingface.co./datasets/kyujinpy/OpenOrca-KO)
-   [nlpai-lab/kullm-v2](https://huggingface.co./datasets/nlpai-lab/kullm-v2)

### **Instruction format**

It follows **TinyLlama** format.

E.g.

```python
text = """\
<|system|>
당신은 사람들이 정보를 찾을 수 있도록 도와주는 인공지능 비서입니다.</s>
<|user|>
대한민국의 수도는 어디야?</s>
<|assistant|>
대한민국의 수도는 서울입니다.</s>
<|user|>
서울 인구는 총 몇 명이야?</s>
"""
```

## **Model Benchmark**

### **[Ko LM Eval Harness](https://github.com/Beomi/ko-lm-evaluation-harness)**

| Task             |         0-shot |         5-shot |        10-shot |      50-shot |
| :--------------- | -------------: | -------------: | -------------: | -----------: |
| kobest_boolq     |       0.334282 |       0.516446 |       0.500478 |     0.498941 |
| kobest_copa      |       0.515061 |       0.504321 |       0.492927 |      0.50809 |
| kobest_hellaswag |        0.36253 |       0.357733 |       0.355873 |     0.376502 |
| kobest_sentineg  |       0.481146 |       0.657411 |       0.687417 |     0.635703 |
| **Average**      | **0.42325475** | **0.50897775** | **0.50917375** | **0.504809** |

### **[Ko-LLM-Leaderboard](https://huggingface.co./spaces/upstage/open-ko-llm-leaderboard)**

| Average | Ko-ARC | Ko-HellaSwag | Ko-MMLU | Ko-TruthfulQA | Ko-CommonGen V2 |
| ------: | -----: | -----------: | ------: | ------------: | --------------: |
|    31.5 |  25.26 |        33.53 |   24.56 |         43.34 |           30.81 |

## **Implementation Code**

This model contains the chat_template instruction format.  
You can use the code below.

```python
from transformers import AutoModelForCausalLM, AutoTokenizer

device = "cuda" # the device to load the model onto

model = AutoModelForCausalLM.from_pretrained("Edentns/DataVortexTL-1.1B-v0.1")
tokenizer = AutoTokenizer.from_pretrained("Edentns/DataVortexTL-1.1B-v0.1")

messages = [
    {"role": "system", "content": "당신은 사람들이 정보를 찾을 수 있도록 도와주는 인공지능 비서입니다."},
    {"role": "user", "content": "대한민국의 수도는 어디야?"},
    {"role": "assistant", "content": "대한민국의 수도는 서울입니다."},
    {"role": "user", "content": "서울 인구는 총 몇 명이야?"}
]

encodeds = tokenizer.apply_chat_template(messages, return_tensors="pt")

model_inputs = encodeds.to(device)
model.to(device)

generated_ids = model.generate(model_inputs, max_new_tokens=1000, do_sample=True)
decoded = tokenizer.batch_decode(generated_ids)
print(decoded[0])
```

## **License**

The model is licensed under the [cc-by-nc-sa-4.0](https://creativecommons.org/licenses/by-nc-sa/4.0/) license, which allows others to copy, modify, and share the work non-commercially, as long as they give appropriate credit and distribute any derivative works under the same license.

<div align="center">
    <a href="https://edentns.com/">
        <img src="./Logo.png" alt="Logo" style="height: 3em;">
    </a>
</div>