--- tags: - text-generation license: cc-by-nc-sa-4.0 language: - ko base_model: LDCC/LDCC-SOLAR-10.7B pipeline_tag: text-generation datasets: - Edentns/data_go_kr-PublicDoc - Edentns/aihub-TL_unanswerable_output - Edentns/aihub-TL_span_extraction_how_output - Edentns/aihub-TL_multiple_choice_output - Edentns/aihub-TL_text_entailment_output - jojo0217/korean_rlhf_dataset - kyujinpy/KOR-OpenOrca-Platypus-v3 - beomi/KoAlpaca-v1.1a - HumanF-MarkrAI/WIKI_QA_Near_dedup --- # **DataVortexS-10.7B-v0.4** DataVortex ## Our Team | Research & Engineering | Product Management | | :--------------------: | :----------------: | | Kwangseok Yang | Seunghyun Choi | | Jeongwon Choi | Hyoseok Choi | ## **Model Details** ### **Base Model** [LDCC/LDCC-SOLAR-10.7B](https://huggingface.co./LDCC/LDCC-SOLAR-10.7B) ### **Trained On** - **OS**: Ubuntu 20.04 - **GPU**: H100 80GB 2ea - **transformers**: v4.36.2 ### **Dataset** - Edentns/data_go_kr-PublicDoc - private - Edentns/aihub-TL_unanswerable_output - private - Edentns/aihub-TL_span_extraction_how_output - private - Edentns/aihub-TL_multiple_choice_output - private - Edentns/aihub-TL_text_entailment_output - private - [jojo0217/korean_rlhf_dataset](https://huggingface.co./datasets/jojo0217/korean_rlhf_dataset) - [kyujinpy/KOR-OpenOrca-Platypus-v3](https://huggingface.co./datasets/kyujinpy/KOR-OpenOrca-Platypus-v3) - [beomi/KoAlpaca-v1.1a](https://huggingface.co./datasets/beomi/KoAlpaca-v1.1a) - [HumanF-MarkrAI/WIKI_QA_Near_dedup](https://huggingface.co./datasets/HumanF-MarkrAI/WIKI_QA_Near_dedup) ### **Instruction format** It follows **Alpaca** format. E.g. ```python text = """\ 당신은 사람들이 정보를 찾을 수 있도록 도와주는 인공지능 비서입니다. ### Instruction: 대한민국의 수도는 어디야? ### Response: 대한민국의 수도는 서울입니다. ### Instruction: 서울 인구는 총 몇 명이야? """ ``` ## **Model Benchmark** ### **[Ko LM Eval Harness](https://github.com/Beomi/ko-lm-evaluation-harness)** | Task | 0-shot | 5-shot | 10-shot | 50-shot | | :--------------- | ----------: | -------------: | -------------: | -----------: | | kobest_boolq | 0.389066 | 0.912924 | 0.912808 | 0.906428 | | kobest_copa | 0.744865 | 0.747742 | 0.768856 | 0.785896 | | kobest_hellaswag | 0.455793 | 0.443909 | 0.465783 | 0.472771 | | kobest_sentineg | 0.584156 | 0.947082 | 0.962216 | 0.954657 | | **Average** | **0.54347** | **0.76291425** | **0.77741575** | **0.779938** | ### **[Ko-LLM-Leaderboard](https://huggingface.co./spaces/upstage/open-ko-llm-leaderboard)** | Average | Ko-ARC | Ko-HellaSwag | Ko-MMLU | Ko-TruthfulQA | Ko-CommonGen V2 | | ------: | -----: | -----------: | ------: | ------------: | --------------: | | 54.15 | 49.4 | 59.7 | 54.63 | 47.5 | 59.5 | ## **Implementation Code** This model contains the chat_template instruction format. You can use the code below. ```python from transformers import AutoModelForCausalLM, AutoTokenizer device = "cuda" # the device to load the model onto model = AutoModelForCausalLM.from_pretrained("Edentns/DataVortexS-10.7B-v0.4") tokenizer = AutoTokenizer.from_pretrained("Edentns/DataVortexS-10.7B-v0.4") messages = [ {"role": "system", "content": "당신은 사람들이 정보를 찾을 수 있도록 도와주는 인공지능 비서입니다."}, {"role": "user", "content": "대한민국의 수도는 어디야?"}, {"role": "assistant", "content": "대한민국의 수도는 서울입니다."}, {"role": "user", "content": "서울 인구는 총 몇 명이야?"} ] encodeds = tokenizer.apply_chat_template(messages, return_tensors="pt") model_inputs = encodeds.to(device) model.to(device) generated_ids = model.generate(model_inputs, max_new_tokens=1000, do_sample=True) decoded = tokenizer.batch_decode(generated_ids) print(decoded[0]) ``` ## **License** The model is licensed under the [cc-by-nc-sa-4.0](https://creativecommons.org/licenses/by-nc-sa/4.0/) license, which allows others to copy, modify, and share the work non-commercially, as long as they give appropriate credit and distribute any derivative works under the same license.
Logo