File size: 3,695 Bytes
4faa809 ecfe07c 4faa809 ecfe07c a97494f 4faa809 ecfe07c 4faa809 ecfe07c 4faa809 c73bf0b 4faa809 ecfe07c a97494f 4faa809 ecfe07c 5f4c679 4faa809 ecfe07c 4faa809 9160dba 8d61465 ff13f5a 8d61465 0d90d04 4faa809 8d61465 a408ab3 4faa809 ecfe07c 4faa809 ecfe07c 4faa809 ecfe07c 4faa809 ecfe07c 4faa809 ecfe07c 4faa809 ecfe07c 4faa809 ecfe07c 4faa809 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 |
---
tags:
- text-generation
license: cc-by-nc-sa-4.0
language:
- ko
base_model: hyeogi/SOLAR-10.7B-dpo-v0.1
pipeline_tag: text-generation
datasets:
- nlpai-lab/kullm-v2
---
# **DataVortexS-10.7B-v0.1**
<img src="./DataVortex.png" alt="DataVortex" style="height: 8em;">
## Our Team
| Research & Engineering | Product Management |
| :--------------------: | :----------------: |
| Kwangseok Yang | Seunghyun Choi |
| Jeongwon Choi | Hyoseok Choi |
## **Model Details**
### **Base Model**
[hyeogi/SOLAR-10.7B-dpo-v0.1](https://huggingface.co./hyeogi/SOLAR-10.7B-dpo-v0.1)
### **Trained On**
- **OS**: Ubuntu 20.04
- **GPU**: H100 80GB 1ea
- **transformers**: v4.36.2
### **Dataset**
- [nlpai-lab/kullm-v2](https://huggingface.co./datasets/nlpai-lab/kullm-v2)
### **Instruction format**
It follows **Alpaca** format.
E.g.
```python
text = """\
λΉμ μ μ¬λλ€μ΄ μ 보λ₯Ό μ°Ύμ μ μλλ‘ λμμ£Όλ μΈκ³΅μ§λ₯ λΉμμ
λλ€.
### Instruction:
λνλ―Όκ΅μ μλλ μ΄λμΌ?
### Response:
λνλ―Όκ΅μ μλλ μμΈμ
λλ€.
### Instruction:
μμΈ μΈκ΅¬λ μ΄ λͺ λͺ
μ΄μΌ?
"""
```
## **Model Benchmark**
### **[Ko LM Eval Harness](https://github.com/Beomi/ko-lm-evaluation-harness)**
| Task | 0-shot | 5-shot | 10-shot | 50-shot |
| :--------------- | -------------: | -----------: | ------------: | -----------: |
| kobest_boolq | 0.334282 | 0.642861 | 0.691496 | 0.638754 |
| kobest_copa | 0.584962 | 0.564325 | 0.570654 | 0.581035 |
| kobest_hellaswag | 0.340022 | 0.339401 | 0.341917 | 0.337713 |
| kobest_sentineg | 0.328257 | 0.414905 | 0.464711 | 0.888914 |
| **Average** | **0.39688075** | **0.490373** | **0.5171945** | **0.611604** |
### **[Ko-LLM-Leaderboard](https://huggingface.co./spaces/upstage/open-ko-llm-leaderboard)**
| Average | Ko-ARC | Ko-HellaSwag | Ko-MMLU | Ko-TruthfulQA | Ko-CommonGen V2 |
| ------: | -----: | -----------: | ------: | ------------: | --------------: |
| 35.39 | 28.48 | 39.79 | 35.98 | 44.72 | 27.63 |
## **Implementation Code**
This model contains the chat_template instruction format.
You can use the code below.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
device = "cuda" # the device to load the model onto
model = AutoModelForCausalLM.from_pretrained("Edentns/DataVortexS-10.7B-v0.1")
tokenizer = AutoTokenizer.from_pretrained("Edentns/DataVortexS-10.7B-v0.1")
messages = [
{"role": "system", "content": "λΉμ μ μ¬λλ€μ΄ μ 보λ₯Ό μ°Ύμ μ μλλ‘ λμμ£Όλ μΈκ³΅μ§λ₯ λΉμμ
λλ€."},
{"role": "user", "content": "λνλ―Όκ΅μ μλλ μ΄λμΌ?"},
{"role": "assistant", "content": "λνλ―Όκ΅μ μλλ μμΈμ
λλ€."},
{"role": "user", "content": "μμΈ μΈκ΅¬λ μ΄ λͺ λͺ
μ΄μΌ?"}
]
encodeds = tokenizer.apply_chat_template(messages, return_tensors="pt")
model_inputs = encodeds.to(device)
model.to(device)
generated_ids = model.generate(model_inputs, max_new_tokens=1000, do_sample=True)
decoded = tokenizer.batch_decode(generated_ids)
print(decoded[0])
```
## **License**
The model is licensed under the [cc-by-nc-sa-4.0](https://creativecommons.org/licenses/by-nc-sa/4.0/) license, which allows others to copy, modify, and share the work non-commercially, as long as they give appropriate credit and distribute any derivative works under the same license.
<div align="center">
<a href="https://edentns.com/">
<img src="./Logo.png" alt="Logo" style="height: 3em;">
</a>
</div>
|