--- tags: - text-generation license: cc-by-nc-sa-4.0 language: - ko base_model: LDCC/LDCC-SOLAR-10.7B pipeline_tag: text-generation --- # **DataVortexS-10.7B-dpo-v1.6** DataVortex ## Our Team | Research & Engineering | Product Management | | :--------------------: | :----------------: | | Kwangseok Yang | Seunghyun Choi | | Jeongwon Choi | Hyoseok Choi | ## **Model Details** ### **Base Model** [LDCC/LDCC-SOLAR-10.7B](https://huggingface.co./LDCC/LDCC-SOLAR-10.7B) ### **Trained On** - **OS**: Ubuntu 22.04 - **GPU**: H100 80GB 4ea - **transformers**: v4.36.2 ### **Instruction format** It follows **ChatML** format. E.g. ```python text = """\ <|im_start|>system 당신은 사람들이 정보를 찾을 수 있도록 도와주는 인공지능 비서입니다.<|im_end|> <|im_start|>user 대한민국의 수도는 어디야?<|im_end|> <|im_start|>assistant 대한민국의 수도는 서울입니다.<|im_end|> <|im_start|>user 서울 인구는 총 몇 명이야?<|im_end|> <|im_start|>assistant """ ``` ## **Model Benchmark** ### **[Ko LM Eval Harness](https://github.com/Beomi/ko-lm-evaluation-harness)** | Task | 0-shot | 5-shot | 10-shot | 50-shot | | :--------------- | -----------: | -----------: | ----------: | -----------: | | kobest_boolq | 0.920118 | 0.92442 | 0.929443 | 0.927317 | | kobest_copa | 0.727263 | 0.778936 | 0.804812 | 0.815761 | | kobest_hellaswag | 0.433039 | 0.465922 | 0.459741 | 0.471022 | | kobest_sentineg | 0.764909 | 0.93946 | 0.937002 | 0.931962 | | **Average** | **0.711332** | **0.777185** | **0.78275** | **0.786516** | ### **[Ko-LLM-Leaderboard](https://huggingface.co./spaces/upstage/open-ko-llm-leaderboard)** | Average | Ko-ARC | Ko-HellaSwag | Ko-MMLU | Ko-TruthfulQA | Ko-CommonGen V2 | | ------: | -----: | -----------: | ------: | ------------: | --------------: | | 59.22 | 53.84 | 67.9 | 52.37 | 64.6 | 57.38 | ## **Implementation Code** This model contains the chat_template instruction format. You can use the code below. ```python from transformers import AutoModelForCausalLM, AutoTokenizer device = "cuda" # the device to load the model onto model = AutoModelForCausalLM.from_pretrained("Edentns/DataVortexS-10.7B-dpo-v1.6") tokenizer = AutoTokenizer.from_pretrained("Edentns/DataVortexS-10.7B-dpo-v1.6") messages = [ {"role": "system", "content": "당신은 사람들이 정보를 찾을 수 있도록 도와주는 인공지능 비서입니다."}, {"role": "user", "content": "대한민국의 수도는 어디야?"}, {"role": "assistant", "content": "대한민국의 수도는 서울입니다."}, {"role": "user", "content": "서울 인구는 총 몇 명이야?"} ] encodeds = tokenizer.apply_chat_template(messages, return_tensors="pt") model_inputs = encodeds.to(device) model.to(device) generated_ids = model.generate(model_inputs, max_new_tokens=1000, do_sample=True) decoded = tokenizer.batch_decode(generated_ids) print(decoded[0]) ``` ## **License** The model is licensed under the [cc-by-nc-sa-4.0](https://creativecommons.org/licenses/by-nc-sa/4.0/) license, which allows others to copy, modify, and share the work non-commercially, as long as they give appropriate credit and distribute any derivative works under the same license.
Logo