File size: 3,710 Bytes
3b2d681 d42328a 3b2d681 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 |
---
tags:
- text-generation
license: cc-by-nc-4.0
language:
- ko
base_model: upstage/SOLAR-10.7B-Instruct-v1.0
pipeline_tag: text-generation
---
# **DataVortexS-10.7B-dpo-v1.0**
<img src="./DataVortex.png" alt="DataVortex" style="height: 8em;">
## **Model Details**
### **Base Model**
[upstage/SOLAR-10.7B-Instruct-v1.0](https://huggingface.co./upstage/SOLAR-10.7B-Instruct-v1.0)
### **Trained On**
- **OS**: Ubuntu 22.04
- **GPU**: H100 80GB 4ea
- **transformers**: v4.36.2
### **Instruction format**
It follows **Alpaca (Chat)** format.
E.g.
```python
text = """\
### System:
λΉμ μ μ¬λλ€μ΄ μ 보λ₯Ό μ°Ύμ μ μλλ‘ λμμ£Όλ μΈκ³΅μ§λ₯ λΉμμ
λλ€.
### User:
λνλ―Όκ΅μ μλλ μ΄λμΌ?
### Assistant:
λνλ―Όκ΅μ μλλ μμΈμ
λλ€.
### User:
μμΈ μΈκ΅¬λ μ΄ λͺ λͺ
μ΄μΌ?
"""
```
## **Model Benchmark**
### **[Ko LM Eval Harness](https://github.com/Beomi/ko-lm-evaluation-harness)**
| Task | 0-shot | 5-shot | 10-shot | 50-shot |
| :--------------- | -------------: | -----------: | -------------: | -------------: |
| kobest_boolq | 0.867265 | 0.930834 | 0.938736 | 0.938023 |
| kobest_copa | 0.722438 | 0.792716 | 0.782842 | 0.805869 |
| kobest_hellaswag | 0.484781 | 0.480055 | 0.496734 | 0.501488 |
| kobest_sentineg | 0.759887 | 0.964735 | 0.964735 | 0.972291 |
| **Average** | **0.70859275** | **0.792085** | **0.79576175** | **0.80441775** |
### **[Ko-LLM-Leaderboard](https://huggingface.co./spaces/upstage/open-ko-llm-leaderboard)**
On Benchmarking ...
| Average | Ko-ARC | Ko-HellaSwag | Ko-MMLU | Ko-TruthfulQA | Ko-CommonGen V2 |
| ------: | -----: | -----------: | ------: | ------------: | --------------: |
| 0 | 0 | 0 | 0 | 0 | 0 |
## **Implementation Code**
This model contains the chat_template instruction format.
You can use the code below.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
device = "cuda" # the device to load the model onto
model = AutoModelForCausalLM.from_pretrained("Edentns/DataVortexS-10.7B-dpo-v1.0")
tokenizer = AutoTokenizer.from_pretrained("Edentns/DataVortexS-10.7B-dpo-v1.0")
messages = [
{"role": "system", "content": "λΉμ μ μ¬λλ€μ΄ μ 보λ₯Ό μ°Ύμ μ μλλ‘ λμμ£Όλ μΈκ³΅μ§λ₯ λΉμμ
λλ€."},
{"role": "user", "content": "λνλ―Όκ΅μ μλλ μ΄λμΌ?"},
{"role": "assistant", "content": "λνλ―Όκ΅μ μλλ μμΈμ
λλ€."},
{"role": "user", "content": "μμΈ μΈκ΅¬λ μ΄ λͺ λͺ
μ΄μΌ?"}
]
encodeds = tokenizer.apply_chat_template(messages, return_tensors="pt")
model_inputs = encodeds.to(device)
model.to(device)
generated_ids = model.generate(model_inputs, max_new_tokens=1000, do_sample=True)
decoded = tokenizer.batch_decode(generated_ids)
print(decoded[0])
```
## **License**
This model is licensed under the [upstage/SOLAR-10.7B-Instruct-v1.0](https://huggingface.co./upstage/SOLAR-10.7B-Instruct-v1.0) license, with the [cc-by-nc-4.0](https://creativecommons.org/licenses/by-nc/4.0/) license granted. Under this license, others are allowed to copy, modify, and share the work, as long as it is not used for commercial purposes. They must provide appropriate credit and distribute any derivative works under the same license. For more details, please refer to the [cc-by-nc-4.0](https://creativecommons.org/licenses/by-nc/4.0/) license.
<div align="center">
<a href="https://edentns.com/">
<img src="./Logo.png" alt="Logo" style="height: 3em;">
</a>
</div>
|