--- tags: - text-generation license: cc-by-nc-sa-4.0 language: - ko base_model: LDCC/LDCC-SOLAR-10.7B pipeline_tag: text-generation datasets: - mncai/orca_dpo_pairs_ko - Ja-ck/Orca-DPO-Pairs-KO - We-Want-GPU/Yi-Ko-DPO-Orca-DPO-Pairs --- # **DataVortexS-10.7B-dpo-v0.1** DataVortex ## Our Team | Research & Engineering | Product Management | | :--------------------: | :----------------: | | Kwangseok Yang | Seunghyun Choi | | Jeongwon Choi | Hyoseok Choi | ## **Model Details** ### **Base Model** [LDCC/LDCC-SOLAR-10.7B](https://huggingface.co./LDCC/LDCC-SOLAR-10.7B) ### **Trained On** - **OS**: Ubuntu 20.04 - **GPU**: H100 80GB 2ea - **transformers**: v4.36.2 ### **Dataset** - [mncai/orca_dpo_pairs_ko](https://huggingface.co./datasets/mncai/orca_dpo_pairs_ko) - [Ja-ck/Orca-DPO-Pairs-KO](https://huggingface.co./datasets/Ja-ck/Orca-DPO-Pairs-KO) - [We-Want-GPU/Yi-Ko-DPO-Orca-DPO-Pairs](https://huggingface.co./datasets/We-Want-GPU/Yi-Ko-DPO-Orca-DPO-Pairs) ### **Instruction format** It follows **Alpaca** format. E.g. ```python text = """\ 당신은 사람들이 정보를 찾을 수 있도록 도와주는 인공지능 비서입니다. ### User: 대한민국의 수도는 어디야? ### Assistant: 대한민국의 수도는 서울입니다. ### User: 서울 인구는 총 몇 명이야? """ ``` ## **Model Benchmark** ### **[Ko LM Eval Harness](https://github.com/Beomi/ko-lm-evaluation-harness)** | Task | 0-shot | 5-shot | 10-shot | 50-shot | | :--------------- | ------------: | -------------: | -----------: | -------------: | | kobest_boolq | 0.334282 | 0.891367 | 0.896755 | 0.884441 | | kobest_copa | 0.697763 | 0.716762 | 0.724769 | 0.751746 | | kobest_hellaswag | 0.432047 | 0.458301 | 0.443993 | 0.458232 | | kobest_sentineg | 0.49353 | 0.954657 | 0.964735 | 0.949606 | | **Average** | **0.4894055** | **0.75527175** | **0.757563** | **0.76100625** | ### **[Ko-LLM-Leaderboard](https://huggingface.co./spaces/upstage/open-ko-llm-leaderboard)** | Average | Ko-ARC | Ko-HellaSwag | Ko-MMLU | Ko-TruthfulQA | Ko-CommonGen V2 | | ------: | -----: | -----------: | ------: | ------------: | --------------: | | 53.21 | 47.87 | 57.18 | 54.82 | 53.64 | 52.54 | ## **Implementation Code** This model contains the chat_template instruction format. You can use the code below. ```python from transformers import AutoModelForCausalLM, AutoTokenizer device = "cuda" # the device to load the model onto model = AutoModelForCausalLM.from_pretrained("Edentns/DataVortexS-10.7B-dpo-v0.1") tokenizer = AutoTokenizer.from_pretrained("Edentns/DataVortexS-10.7B-dpo-v0.1") messages = [ {"role": "system", "content": "당신은 사람들이 정보를 찾을 수 있도록 도와주는 인공지능 비서입니다."}, {"role": "user", "content": "대한민국의 수도는 어디야?"}, {"role": "assistant", "content": "대한민국의 수도는 서울입니다."}, {"role": "user", "content": "서울 인구는 총 몇 명이야?"} ] encodeds = tokenizer.apply_chat_template(messages, return_tensors="pt") model_inputs = encodeds.to(device) model.to(device) generated_ids = model.generate(model_inputs, max_new_tokens=1000, do_sample=True) decoded = tokenizer.batch_decode(generated_ids) print(decoded[0]) ``` ## **License** The model is licensed under the [cc-by-nc-sa-4.0](https://creativecommons.org/licenses/by-nc-sa/4.0/) license, which allows others to copy, modify, and share the work non-commercially, as long as they give appropriate credit and distribute any derivative works under the same license.
Logo