--- base_model: anthracite-org/magnum-v2-4b library_name: peft license: other tags: - llama-factory - lora - generated_from_trainer model-index: - name: magnum-4b-KTO-test results: [] --- # magnum-4b-KTO-test This model is a fine-tuned version of [anthracite-org/magnum-v2-4b](https://huggingface.co./anthracite-org/magnum-v2-4b) on the combined_new_22k.json dataset. It achieves the following results on the evaluation set: - Loss: 0.5030 - Rewards/chosen: 0.0007 - Logps/chosen: -11.2857 - Rewards/rejected: -0.0006 - Logps/rejected: -10.6547 - Rewards/margins: 0.0013 - Kl: 0.0009 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 48 - total_train_batch_size: 768 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.01 - num_epochs: 2.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Logps/chosen | Rewards/rejected | Logps/rejected | Rewards/margins | Kl | |:-------------:|:------:|:----:|:---------------:|:--------------:|:------------:|:----------------:|:--------------:|:---------------:|:------:| | 0.5042 | 0.2788 | 16 | 0.5038 | 0.0004 | -11.2884 | -0.0004 | -10.6529 | 0.0008 | 0.0022 | | 0.5037 | 0.5575 | 32 | 0.5033 | 0.0006 | -11.2865 | -0.0008 | -10.6565 | 0.0014 | 0.0013 | | 0.5035 | 0.8363 | 48 | 0.5041 | 0.0003 | -11.2899 | -0.0006 | -10.6546 | 0.0008 | 0.0016 | | 0.5037 | 1.1151 | 64 | 0.5035 | 0.0005 | -11.2872 | -0.0005 | -10.6540 | 0.0011 | 0.0017 | | 0.5036 | 1.3938 | 80 | 0.5036 | 0.0005 | -11.2874 | -0.0005 | -10.6535 | 0.0010 | 0.0010 | | 0.5032 | 1.6726 | 96 | 0.5035 | 0.0006 | -11.2867 | -0.0005 | -10.6541 | 0.0011 | 0.0012 | | 0.5036 | 1.9514 | 112 | 0.5037 | 0.0006 | -11.2869 | -0.0006 | -10.6546 | 0.0011 | 0.0009 | ### Framework versions - PEFT 0.12.0 - Transformers 4.45.0.dev0 - Pytorch 2.2.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1