--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall model-index: - name: vit-fire-detection results: [] --- # vit-fire-detection This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co./google/vit-base-patch16-224-in21k) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0259 - Precision: 0.9947 - Recall: 0.9947 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:| | 0.1186 | 1.0 | 190 | 0.0757 | 0.9789 | 0.9775 | | 0.0392 | 2.0 | 380 | 0.0259 | 0.9947 | 0.9947 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.14.0.dev20221111 - Datasets 2.8.0 - Tokenizers 0.12.1