File size: 2,107 Bytes
6a1b7d0 5c11d20 6a1b7d0 5c11d20 6a1b7d0 5c11d20 6a1b7d0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- precision
- recall
model-index:
- name: vit-fire-detection
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# vit-fire-detection
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co./google/vit-base-patch16-224-in21k) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0189
- Precision: 0.9974
- Recall: 0.9974
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|
| 0.1023 | 1.0 | 190 | 0.0528 | 0.9829 | 0.9828 |
| 0.058 | 2.0 | 380 | 0.0375 | 0.9896 | 0.9894 |
| 0.038 | 3.0 | 570 | 0.0359 | 0.9909 | 0.9907 |
| 0.0283 | 4.0 | 760 | 0.0467 | 0.9861 | 0.9854 |
| 0.0326 | 5.0 | 950 | 0.0222 | 0.9934 | 0.9934 |
| 0.0257 | 6.0 | 1140 | 0.0249 | 0.9934 | 0.9934 |
| 0.0259 | 7.0 | 1330 | 0.0296 | 0.9921 | 0.9921 |
| 0.0171 | 8.0 | 1520 | 0.0239 | 0.9948 | 0.9947 |
| 0.0211 | 9.0 | 1710 | 0.0190 | 0.9974 | 0.9974 |
| 0.0054 | 10.0 | 1900 | 0.0189 | 0.9974 | 0.9974 |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.14.0.dev20221111
- Datasets 2.8.0
- Tokenizers 0.12.1
|