|
import bisect |
|
import functools |
|
import os |
|
|
|
from abc import ABC |
|
from collections.abc import Callable |
|
from typing import List, NamedTuple, Optional, Union |
|
|
|
import numpy as np |
|
import torch |
|
|
|
from pyannote.audio.core.io import AudioFile |
|
from pyannote.audio.pipelines import VoiceActivityDetection |
|
from pyannote.audio.pipelines.utils import PipelineModel |
|
from pyannote.core import Annotation, Segment, SlidingWindowFeature |
|
|
|
from faster_whisper.utils import get_assets_path |
|
|
|
|
|
|
|
class VadOptions(NamedTuple): |
|
"""VAD options. |
|
|
|
Attributes: |
|
threshold: Speech threshold. Silero VAD outputs speech probabilities for each audio chunk, |
|
probabilities ABOVE this value are considered as SPEECH. It is better to tune this |
|
parameter for each dataset separately, but "lazy" 0.5 is pretty good for most datasets. |
|
min_speech_duration_ms: Final speech chunks shorter min_speech_duration_ms are thrown out. |
|
max_speech_duration_s: Maximum duration of speech chunks in seconds. Chunks longer |
|
than max_speech_duration_s will be split at the timestamp of the last silence that |
|
lasts more than 100ms (if any), to prevent aggressive cutting. Otherwise, they will be |
|
split aggressively just before max_speech_duration_s. |
|
min_silence_duration_ms: In the end of each speech chunk wait for min_silence_duration_ms |
|
before separating it |
|
speech_pad_ms: Final speech chunks are padded by speech_pad_ms each side |
|
""" |
|
|
|
threshold: float = 0.5 |
|
min_speech_duration_ms: int = 250 |
|
max_speech_duration_s: float = float("inf") |
|
min_silence_duration_ms: int = 2000 |
|
speech_pad_ms: int = 400 |
|
|
|
|
|
def get_speech_timestamps( |
|
audio: torch.Tensor, |
|
vad_options: Optional[VadOptions] = None, |
|
**kwargs, |
|
) -> List[dict]: |
|
"""This method is used for splitting long audios into speech chunks using silero VAD. |
|
|
|
Args: |
|
audio: One dimensional float array. |
|
vad_options: Options for VAD processing. |
|
kwargs: VAD options passed as keyword arguments for backward compatibility. |
|
|
|
Returns: |
|
List of dicts containing begin and end samples of each speech chunk. |
|
""" |
|
if vad_options is None: |
|
vad_options = VadOptions(**kwargs) |
|
|
|
threshold = vad_options.threshold |
|
min_speech_duration_ms = vad_options.min_speech_duration_ms |
|
max_speech_duration_s = vad_options.max_speech_duration_s |
|
min_silence_duration_ms = vad_options.min_silence_duration_ms |
|
window_size_samples = 512 |
|
speech_pad_ms = vad_options.speech_pad_ms |
|
sampling_rate = 16000 |
|
min_speech_samples = sampling_rate * min_speech_duration_ms / 1000 |
|
speech_pad_samples = sampling_rate * speech_pad_ms / 1000 |
|
max_speech_samples = ( |
|
sampling_rate * max_speech_duration_s |
|
- window_size_samples |
|
- 2 * speech_pad_samples |
|
) |
|
min_silence_samples = sampling_rate * min_silence_duration_ms / 1000 |
|
min_silence_samples_at_max_speech = sampling_rate * 98 / 1000 |
|
|
|
audio_length_samples = len(audio) |
|
|
|
model = get_vad_model() |
|
state, context = model.get_initial_states(batch_size=1) |
|
|
|
speech_probs = [] |
|
for current_start_sample in range(0, audio_length_samples, window_size_samples): |
|
chunk = audio[current_start_sample : current_start_sample + window_size_samples] |
|
if len(chunk) < window_size_samples: |
|
chunk = np.pad(chunk, (0, int(window_size_samples - len(chunk)))) |
|
speech_prob, state, context = model(chunk, state, context, sampling_rate) |
|
speech_probs.append(speech_prob) |
|
|
|
triggered = False |
|
speeches = [] |
|
current_speech = {} |
|
neg_threshold = threshold - 0.15 |
|
|
|
|
|
temp_end = 0 |
|
|
|
prev_end = next_start = 0 |
|
|
|
for i, speech_prob in enumerate(speech_probs): |
|
if (speech_prob >= threshold) and temp_end: |
|
temp_end = 0 |
|
if next_start < prev_end: |
|
next_start = window_size_samples * i |
|
|
|
if (speech_prob >= threshold) and not triggered: |
|
triggered = True |
|
current_speech["start"] = window_size_samples * i |
|
continue |
|
|
|
if ( |
|
triggered |
|
and (window_size_samples * i) - current_speech["start"] > max_speech_samples |
|
): |
|
if prev_end: |
|
current_speech["end"] = prev_end |
|
speeches.append(current_speech) |
|
current_speech = {} |
|
|
|
if next_start < prev_end: |
|
triggered = False |
|
else: |
|
current_speech["start"] = next_start |
|
prev_end = next_start = temp_end = 0 |
|
else: |
|
current_speech["end"] = window_size_samples * i |
|
speeches.append(current_speech) |
|
current_speech = {} |
|
prev_end = next_start = temp_end = 0 |
|
triggered = False |
|
continue |
|
|
|
if (speech_prob < neg_threshold) and triggered: |
|
if not temp_end: |
|
temp_end = window_size_samples * i |
|
|
|
if (window_size_samples * i) - temp_end > min_silence_samples_at_max_speech: |
|
prev_end = temp_end |
|
if (window_size_samples * i) - temp_end < min_silence_samples: |
|
continue |
|
else: |
|
current_speech["end"] = temp_end |
|
if ( |
|
current_speech["end"] - current_speech["start"] |
|
) > min_speech_samples: |
|
speeches.append(current_speech) |
|
current_speech = {} |
|
prev_end = next_start = temp_end = 0 |
|
triggered = False |
|
continue |
|
|
|
if ( |
|
current_speech |
|
and (audio_length_samples - current_speech["start"]) > min_speech_samples |
|
): |
|
current_speech["end"] = audio_length_samples |
|
speeches.append(current_speech) |
|
|
|
for i, speech in enumerate(speeches): |
|
if i == 0: |
|
speech["start"] = int(max(0, speech["start"] - speech_pad_samples)) |
|
if i != len(speeches) - 1: |
|
silence_duration = speeches[i + 1]["start"] - speech["end"] |
|
if silence_duration < 2 * speech_pad_samples: |
|
speech["end"] += int(silence_duration // 2) |
|
speeches[i + 1]["start"] = int( |
|
max(0, speeches[i + 1]["start"] - silence_duration // 2) |
|
) |
|
else: |
|
speech["end"] = int( |
|
min(audio_length_samples, speech["end"] + speech_pad_samples) |
|
) |
|
speeches[i + 1]["start"] = int( |
|
max(0, speeches[i + 1]["start"] - speech_pad_samples) |
|
) |
|
else: |
|
speech["end"] = int( |
|
min(audio_length_samples, speech["end"] + speech_pad_samples) |
|
) |
|
|
|
return speeches |
|
|
|
|
|
def collect_chunks(audio: torch.Tensor, chunks: List[dict]) -> torch.Tensor: |
|
"""Collects and concatenates audio chunks.""" |
|
if not chunks: |
|
return torch.tensor([], dtype=torch.float32) |
|
|
|
return torch.cat([audio[chunk["start"] : chunk["end"]] for chunk in chunks]) |
|
|
|
|
|
class SpeechTimestampsMap: |
|
"""Helper class to restore original speech timestamps.""" |
|
|
|
def __init__(self, chunks: List[dict], sampling_rate: int, time_precision: int = 2): |
|
self.sampling_rate = sampling_rate |
|
self.time_precision = time_precision |
|
self.chunk_end_sample = [] |
|
self.total_silence_before = [] |
|
|
|
previous_end = 0 |
|
silent_samples = 0 |
|
|
|
for chunk in chunks: |
|
silent_samples += chunk["start"] - previous_end |
|
previous_end = chunk["end"] |
|
|
|
self.chunk_end_sample.append(chunk["end"] - silent_samples) |
|
self.total_silence_before.append(silent_samples / sampling_rate) |
|
|
|
def get_original_time( |
|
self, |
|
time: float, |
|
chunk_index: Optional[int] = None, |
|
) -> float: |
|
if chunk_index is None: |
|
chunk_index = self.get_chunk_index(time) |
|
|
|
total_silence_before = self.total_silence_before[chunk_index] |
|
return round(total_silence_before + time, self.time_precision) |
|
|
|
def get_chunk_index(self, time: float) -> int: |
|
sample = int(time * self.sampling_rate) |
|
return min( |
|
bisect.bisect(self.chunk_end_sample, sample), |
|
len(self.chunk_end_sample) - 1, |
|
) |
|
|
|
|
|
@functools.lru_cache |
|
def get_vad_model(): |
|
"""Returns the VAD model instance.""" |
|
path = os.path.join(get_assets_path(), "silero_vad.onnx") |
|
return SileroVADModel(path) |
|
|
|
|
|
class SileroVADModel: |
|
def __init__(self, path): |
|
try: |
|
import onnxruntime |
|
except ImportError as e: |
|
raise RuntimeError( |
|
"Applying the VAD filter requires the onnxruntime package" |
|
) from e |
|
|
|
opts = onnxruntime.SessionOptions() |
|
opts.inter_op_num_threads = 1 |
|
opts.intra_op_num_threads = 1 |
|
opts.log_severity_level = 4 |
|
|
|
self.session = onnxruntime.InferenceSession( |
|
path, |
|
providers=["CPUExecutionProvider"], |
|
sess_options=opts, |
|
) |
|
|
|
def get_initial_states(self, batch_size: int): |
|
state = np.zeros((2, batch_size, 128), dtype=np.float32) |
|
context = np.zeros((batch_size, 64), dtype=np.float32) |
|
return state, context |
|
|
|
def __call__(self, x, state, context, sr: int): |
|
if len(x.shape) == 1: |
|
x = np.expand_dims(x, 0) |
|
if len(x.shape) > 2: |
|
raise ValueError( |
|
f"Too many dimensions for input audio chunk {len(x.shape)}" |
|
) |
|
if sr / x.shape[1] > 31.25: |
|
raise ValueError("Input audio chunk is too short") |
|
|
|
x = np.concatenate([context, x], axis=1) |
|
|
|
ort_inputs = { |
|
"input": x, |
|
"state": state, |
|
"sr": np.array(sr, dtype="int64"), |
|
} |
|
|
|
out, state = self.session.run(None, ort_inputs) |
|
context = x[..., -64:] |
|
|
|
return out, state, context |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class SegmentX: |
|
def __init__(self, start, end, speaker=None): |
|
self.start = start |
|
self.end = end |
|
self.speaker = speaker |
|
|
|
|
|
class VoiceActivitySegmentation(VoiceActivityDetection, ABC): |
|
"""Pipeline wrapper class for Voice Activity Segmentation based on VAD scores.""" |
|
|
|
def __init__( |
|
self, |
|
segmentation: PipelineModel = "pyannote/segmentation", |
|
device: Optional[Union[str, torch.device]] = None, |
|
fscore: bool = False, |
|
use_auth_token: Optional[str] = None, |
|
**inference_kwargs, |
|
): |
|
"""Initialize the pipeline with the model name and the optional device. |
|
|
|
Args: |
|
dict parameters of VoiceActivityDetection class from pyannote: |
|
segmentation (PipelineModel): Loaded model name. |
|
device (torch.device or None): Device to perform the segmentation. |
|
fscore (bool): Flag indicating whether to compute F-score during inference. |
|
use_auth_token (str or None): Optional authentication token for model access. |
|
inference_kwargs (dict): Additional arguments from VoiceActivityDetection pipeline. |
|
""" |
|
super().__init__( |
|
segmentation=segmentation, |
|
device=device, |
|
fscore=fscore, |
|
use_auth_token=use_auth_token, |
|
**inference_kwargs, |
|
) |
|
|
|
def apply( |
|
self, file: AudioFile, hook: Optional[Callable] = None |
|
) -> SlidingWindowFeature: |
|
"""Apply voice activity detection on the audio file. |
|
|
|
Args: |
|
file (AudioFile): Processed file. |
|
hook (callable): Hook called with signature: hook("step_name", step_artefact, file=file) |
|
|
|
Returns: |
|
segmentations (SlidingWindowFeature): Voice activity segmentation. |
|
""" |
|
|
|
hook = self.setup_hook(file, hook=hook) |
|
|
|
|
|
|
|
if self.training: |
|
if self.CACHED_SEGMENTATION in file: |
|
segmentations = file[self.CACHED_SEGMENTATION] |
|
else: |
|
segmentations = self._segmentation(file) |
|
file[self.CACHED_SEGMENTATION] = segmentations |
|
else: |
|
segmentations: SlidingWindowFeature = self._segmentation(file) |
|
|
|
return segmentations |
|
|
|
|
|
class BinarizeVadScores: |
|
"""Binarize detection scores using hysteresis thresholding. |
|
|
|
Reference: |
|
Gregory Gelly and Jean-Luc Gauvain. "Minimum Word Error Training of |
|
RNN-based Voice Activity Detection", InterSpeech 2015. |
|
|
|
Modified by Max Bain to include WhisperX's min-cut operation |
|
https://arxiv.org/abs/2303.00747 |
|
|
|
""" |
|
|
|
def __init__( |
|
self, |
|
onset: float = 0.5, |
|
offset: Optional[float] = None, |
|
min_duration_on: float = 0.0, |
|
min_duration_off: float = 0.0, |
|
pad_onset: float = 0.0, |
|
pad_offset: float = 0.0, |
|
max_duration: float = float("inf"), |
|
): |
|
"""Initializes the parameters for Binarizing the VAD scores. |
|
|
|
Args: |
|
onset (float, optional): |
|
Onset threshold. Defaults to 0.5. |
|
offset (float, optional): |
|
Offset threshold. Defaults to `onset`. |
|
min_duration_on (float, optional): |
|
Remove active regions shorter than that many seconds. Defaults to 0s. |
|
min_duration_off (float, optional): |
|
Fill inactive regions shorter than that many seconds. Defaults to 0s. |
|
pad_onset (float, optional): |
|
Extend active regions by moving their start time by that many seconds. |
|
Defaults to 0s. |
|
pad_offset (float, optional): |
|
Extend active regions by moving their end time by that many seconds. |
|
Defaults to 0s. |
|
max_duration (float): |
|
The maximum length of an active segment. |
|
""" |
|
super().__init__() |
|
|
|
self.onset = onset |
|
self.offset = offset or onset |
|
|
|
self.pad_onset = pad_onset |
|
self.pad_offset = pad_offset |
|
|
|
self.min_duration_on = min_duration_on |
|
self.min_duration_off = min_duration_off |
|
|
|
self.max_duration = max_duration |
|
|
|
def __get_active_regions(self, scores: SlidingWindowFeature) -> Annotation: |
|
"""Extract active regions from VAD scores. |
|
|
|
Args: |
|
scores (SlidingWindowFeature): Detection scores. |
|
|
|
Returns: |
|
active (Annotation): Active regions. |
|
""" |
|
num_frames, num_classes = scores.data.shape |
|
frames = scores.sliding_window |
|
timestamps = [frames[i].middle for i in range(num_frames)] |
|
|
|
active = Annotation() |
|
for k, k_scores in enumerate(scores.data.T): |
|
label = k if scores.labels is None else scores.labels[k] |
|
|
|
|
|
start = timestamps[0] |
|
is_active = k_scores[0] > self.onset |
|
curr_scores = [k_scores[0]] |
|
curr_timestamps = [start] |
|
t = start |
|
|
|
for t, y in zip(timestamps[1:], k_scores[1:]): |
|
|
|
if is_active: |
|
curr_duration = t - start |
|
if curr_duration > self.max_duration: |
|
search_after = len(curr_scores) // 2 |
|
|
|
min_score_div_idx = search_after + np.argmin( |
|
curr_scores[search_after:] |
|
) |
|
min_score_t = curr_timestamps[min_score_div_idx] |
|
region = Segment( |
|
start - self.pad_onset, min_score_t + self.pad_offset |
|
) |
|
active[region, k] = label |
|
start = curr_timestamps[min_score_div_idx] |
|
curr_scores = curr_scores[min_score_div_idx + 1 :] |
|
curr_timestamps = curr_timestamps[min_score_div_idx + 1 :] |
|
|
|
elif y < self.offset: |
|
region = Segment(start - self.pad_onset, t + self.pad_offset) |
|
active[region, k] = label |
|
start = t |
|
is_active = False |
|
curr_scores = [] |
|
curr_timestamps = [] |
|
curr_scores.append(y) |
|
curr_timestamps.append(t) |
|
|
|
else: |
|
|
|
if y > self.onset: |
|
start = t |
|
is_active = True |
|
|
|
|
|
if is_active: |
|
region = Segment(start - self.pad_onset, t + self.pad_offset) |
|
active[region, k] = label |
|
|
|
return active |
|
|
|
def __call__(self, scores: SlidingWindowFeature) -> Annotation: |
|
"""Binarize detection scores. |
|
|
|
Args: |
|
scores (SlidingWindowFeature): Detection scores. |
|
|
|
Returns: |
|
active (Annotation): Binarized scores. |
|
""" |
|
active = self.__get_active_regions(scores) |
|
|
|
|
|
if self.pad_offset > 0.0 or self.pad_onset > 0.0 or self.min_duration_off > 0.0: |
|
if self.max_duration < float("inf"): |
|
raise NotImplementedError("This would break current max_duration param") |
|
active = active.support(collar=self.min_duration_off) |
|
|
|
|
|
if self.min_duration_on > 0: |
|
for segment, track in list(active.itertracks()): |
|
if segment.duration < self.min_duration_on: |
|
del active[segment, track] |
|
|
|
return active |
|
|
|
|
|
def merge_chunks( |
|
segments, |
|
chunk_length, |
|
onset: float = 0.5, |
|
offset: Optional[float] = None, |
|
edge_padding: float = 0.1, |
|
): |
|
""" |
|
Merge operation described in whisper-x paper |
|
""" |
|
curr_end = 0 |
|
merged_segments = [] |
|
seg_idxs = [] |
|
speaker_idxs = [] |
|
|
|
assert chunk_length > 0 |
|
binarize = BinarizeVadScores(max_duration=chunk_length, onset=onset, offset=offset) |
|
segments = binarize(segments) |
|
segments_list = [] |
|
for speech_turn in segments.get_timeline(): |
|
segments_list.append( |
|
SegmentX( |
|
max(0.0, speech_turn.start - edge_padding), |
|
speech_turn.end + edge_padding, |
|
"UNKNOWN", |
|
) |
|
) |
|
|
|
if len(segments_list) == 0: |
|
print("No active speech found in audio") |
|
return [] |
|
|
|
|
|
curr_start = segments_list[0].start |
|
|
|
for idx, seg in enumerate(segments_list): |
|
|
|
|
|
if idx > 0: |
|
if seg.start < segments_list[idx - 1].end: |
|
seg.start += edge_padding |
|
if idx < len(segments_list) - 1: |
|
if seg.end > segments_list[idx + 1].start: |
|
seg.end -= edge_padding |
|
|
|
if seg.end - curr_start > chunk_length and curr_end - curr_start > 0: |
|
merged_segments.append( |
|
{ |
|
"start": curr_start, |
|
"end": curr_end, |
|
"segments": seg_idxs, |
|
} |
|
) |
|
curr_start = seg.start |
|
seg_idxs = [] |
|
speaker_idxs = [] |
|
curr_end = seg.end |
|
seg_idxs.append((seg.start, seg.end)) |
|
speaker_idxs.append(seg.speaker) |
|
|
|
merged_segments.append( |
|
{ |
|
"start": curr_start, |
|
"end": curr_end, |
|
"segments": seg_idxs, |
|
} |
|
) |
|
return merged_segments |
|
|