--- license: mit tags: - generated_from_trainer model-index: - name: xlnet-base-cased-finetuned-WikiCorpus-PoS results: [] datasets: - Babelscape/wikineural language: - en metrics: - accuracy - f1 - recall - precision - seqeval pipeline_tag: token-classification --- # xlnet-base-cased-finetuned-WikiNeural-PoS This model is a fine-tuned version of [xlnet-base-cased](https://huggingface.co./xlnet-base-cased). It achieves the following results on the evaluation set: - Loss: 0.0949 - Loc - Precision: 0.9289891395154553 - Recall: 0.9336691855583543 - F1: 0.931323283082077 - Number: 5955 - Misc - Precision: 0.8191960332920134 - Recall: 0.9140486069946651 - F1: 0.8640268957788569 - Number: 5061 - Org - Precision: 0.9199886104783599 - Recall: 0.9367932734125833 - F1: 0.9283148972848728 - Number: 3449 - Per - Precision: 0.9687377113645301 - Recall: 0.9456813819577735 - F1: 0.9570707070707071 - Number: 5210 - Overall - Precision: 0.9068 - Recall: 0.9324 - F1: 0.9194 - Accuracy: 0.9904 ## Model description For more information on how it was created, check out the following link: https://github.com/DunnBC22/NLP_Projects/blob/main/Token%20Classification/Monolingual/WikiNeural%20-%20Transformer%20Comparison/POS%20Project%20with%20Wikineural%20Dataset%20-%20XLNet%20Transformer.ipynb ## Intended uses & limitations This model is intended to demonstrate my ability to solve a complex problem using technology. ## Training and evaluation data Dataset Source: https://huggingface.co./datasets/Babelscape/wikineural ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Loc Precision | Loc Recall | Loc F1 | Loc Number | Misc Precision | Misc Recall | Misc F1 | Misc Number | Org Precision | Org Recall | Org F1 | Org Number | Per Precision | Per Recall | Per F1 | Per Number | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | |:-------------:|:-----:|:-----:|:--------------:|:-----------------:|:-------------:|:------------:|:--------------:|:-----------------:|:--------------:|:----------:|:--------:|:--------:|:----------:|:-----------:|:----------:|:----------:|:----------:|:---------:|:----------:|:---------:|:-------:|:----------:|:---------:| | 0.1119 | 1.0 | 5795 | 0.1067 | 0.9054 | 0.9382 | 0.9215 | 5955 | 0.7967 | 0.8884 | 0.8401 | 5061 | 0.9112 | 0.9226 | 0.9169 | 3449 | 0.9585 | 0.9524 | 0.9554 | 5210 | 0.8899 | 0.9264 | 0.9078 | 0.9887 | | 0.0724 | 2.0 | 11590 | 0.0949 | 0.9290 | 0.9337 | 0.9313 | 5955 | 0.8192 | 0.9140 | 0.8640 | 5061 | 0.9200 | 0.9368 | 0.9283 | 3449 | 0.9687 | 0.9457 | 0.9571 | 5210 | 0.9068 | 0.9324 | 0.9194 | 0.9904 | * All values in the above chart are rounded to the nearest ten-thousandths. ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0 - Datasets 2.11.0 - Tokenizers 0.13.3