DunnBC22 commited on
Commit
6c09968
·
1 Parent(s): d630adf

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +30 -13
README.md CHANGED
@@ -24,14 +24,31 @@ This model is a fine-tuned version of [xlnet-base-cased](https://huggingface.co/
24
 
25
  It achieves the following results on the evaluation set:
26
  - Loss: 0.0949
27
- - Loc: {'precision': 0.9289891395154553, 'recall': 0.9336691855583543, 'f1': 0.931323283082077, 'number': 5955}
28
- - Misc: {'precision': 0.8191960332920134, 'recall': 0.9140486069946651, 'f1': 0.8640268957788569, 'number': 5061}
29
- - Org: {'precision': 0.9199886104783599, 'recall': 0.9367932734125833, 'f1': 0.9283148972848728, 'number': 3449}
30
- - Per: {'precision': 0.9687377113645301, 'recall': 0.9456813819577735, 'f1': 0.9570707070707071, 'number': 5210}
31
- - Overall Precision: 0.9068
32
- - Overall Recall: 0.9324
33
- - Overall F1: 0.9194
34
- - Overall Accuracy: 0.9904
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35
 
36
  ## Model description
37
 
@@ -60,11 +77,11 @@ The following hyperparameters were used during training:
60
 
61
  ### Training results
62
 
63
- | Training Loss | Epoch | Step | Validation Loss | Loc | Misc | Org | Per | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
64
- |:-------------:|:-----:|:-----:|:---------------:|:---------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
65
- | 0.1119 | 1.0 | 5795 | 0.1067 | {'precision': 0.9053637984119267, 'recall': 0.9382031905961377, 'f1': 0.9214910110506349, 'number': 5955} | {'precision': 0.7967393230551125, 'recall': 0.8883619837976684, 'f1': 0.8400597907324365, 'number': 5061} | {'precision': 0.911225658648339, 'recall': 0.9225862568860539, 'f1': 0.9168707679008787, 'number': 3449} | {'precision': 0.958470156461271, 'recall': 0.9523992322456813, 'f1': 0.9554250505439492, 'number': 5210} | 0.8899 | 0.9264 | 0.9078 | 0.9887 |
66
- | 0.0724 | 2.0 | 11590 | 0.0949 | {'precision': 0.9289891395154553, 'recall': 0.9336691855583543, 'f1': 0.931323283082077, 'number': 5955} | {'precision': 0.8191960332920134, 'recall': 0.9140486069946651, 'f1': 0.8640268957788569, 'number': 5061} | {'precision': 0.9199886104783599, 'recall': 0.9367932734125833, 'f1': 0.9283148972848728, 'number': 3449} | {'precision': 0.9687377113645301, 'recall': 0.9456813819577735, 'f1': 0.9570707070707071, 'number': 5210} | 0.9068 | 0.9324 | 0.9194 | 0.9904 |
67
-
68
 
69
  ### Framework versions
70
 
 
24
 
25
  It achieves the following results on the evaluation set:
26
  - Loss: 0.0949
27
+ - Loc
28
+ - Precision: 0.9289891395154553
29
+ - Recall: 0.9336691855583543
30
+ - F1: 0.931323283082077
31
+ - Number: 5955
32
+ - Misc
33
+ - Precision: 0.8191960332920134
34
+ - Recall: 0.9140486069946651
35
+ - F1: 0.8640268957788569
36
+ - Number: 5061
37
+ - Org
38
+ - Precision: 0.9199886104783599
39
+ - Recall: 0.9367932734125833
40
+ - F1: 0.9283148972848728
41
+ - Number: 3449
42
+ - Per
43
+ - Precision: 0.9687377113645301
44
+ - Recall: 0.9456813819577735
45
+ - F1: 0.9570707070707071
46
+ - Number: 5210
47
+ - Overall
48
+ - Precision: 0.9068
49
+ - Recall: 0.9324
50
+ - F1: 0.9194
51
+ - Accuracy: 0.9904
52
 
53
  ## Model description
54
 
 
77
 
78
  ### Training results
79
 
80
+ | Training Loss | Epoch | Step | Validation Loss | Loc Precision | Loc Recall | Loc F1 | Loc Number | Misc Precision | Misc Recall | Misc F1 | Misc Number | Org Precision | Org Recall | Org F1 | Org Number | Per Precision | Per Recall | Per F1 | Per Number | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
81
+ |:-------------:|:-----:|:-----:|:--------------:|:-----------------:|:-------------:|:------------:|:--------------:|:-----------------:|:--------------:|:----------:|:--------:|:--------:|:----------:|:-----------:|:----------:|:----------:|:----------:|:---------:|:----------:|:---------:|:-------:|:----------:|:---------:|
82
+ | 0.1119 | 1.0 | 5795 | 0.1067 | 0.9054 | 0.9382 | 0.9215 | 5955 | 0.7967 | 0.8884 | 0.8401 | 5061 | 0.9112 | 0.9226 | 0.9169 | 3449 | 0.9585 | 0.9524 | 0.9554 | 5210 | 0.8899 | 0.9264 | 0.9078 | 0.9887 |
83
+ | 0.0724 | 2.0 | 11590 | 0.0949 | 0.9290 | 0.9337 | 0.9313 | 5955 | 0.8192 | 0.9140 | 0.8640 | 5061 | 0.9200 | 0.9368 | 0.9283 | 3449 | 0.9687 | 0.9457 | 0.9571 | 5210 | 0.9068 | 0.9324 | 0.9194 | 0.9904 |
84
+ * All values in the above chart are rounded to the nearest ten-thousandths.
85
 
86
  ### Framework versions
87