--- license: cc-by-nc-sa-4.0 base_model: microsoft/layoutlmv3-base tags: - generated_from_trainer - Document Layout - LayoutLMv3 datasets: - funsd-layoutlmv3 metrics: - f1 - accuracy - recall - precision model-index: - name: layoutlmv3-base-fine_tuned-FUNSD_dataset results: - task: name: Token Classification type: token-classification dataset: name: funsd-layoutlmv3 type: funsd-layoutlmv3 config: funsd split: test args: funsd metrics: - name: Precision type: precision value: 0.8978890525282278 - name: Recall type: recall value: 0.9085941381023348 - name: F1 type: f1 value: 0.9032098765432099 - name: Accuracy type: accuracy value: 0.8461904195887318 language: - en --- # layoutlmv3-base-fine_tuned-FUNSD_dataset This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co./microsoft/layoutlmv3-base) on the funsd-layoutlmv3 dataset. It achieves the following results on the evaluation set: - Loss: 0.2956 - Precision: 0.8979 - Recall: 0.9086 - F1: 0.9032 - Accuracy: 0.8462 ## Model description For more information on how it was created, check out the following link: ## Intended uses & limitations This model is intended to demonstrate my ability to solve a complex problem using technology. ## Training and evaluation data Dataset Source: https://huggingface.co./datasets/nielsr/funsd-layoutlmv3 ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 2000 ### Training results | Train Loss | Epoch | Step | Valid. Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2149 | 1.33 | 100 | 0.2402 | 0.7469 | 0.8212 | 0.7823 | 0.7758 | | 0.1466 | 2.67 | 200 | 0.1869 | 0.8161 | 0.8838 | 0.8486 | 0.8273 | | 0.1122 | 4.0 | 300 | 0.1902 | 0.8538 | 0.8997 | 0.8761 | 0.8316 | | 0.0757 | 5.33 | 400 | 0.1857 | 0.8354 | 0.8927 | 0.8631 | 0.8349 | | 0.0427 | 6.67 | 500 | 0.2091 | 0.8792 | 0.8897 | 0.8844 | 0.8446 | | 0.0495 | 8.0 | 600 | 0.2235 | 0.8825 | 0.9031 | 0.8927 | 0.8370 | | 0.0369 | 9.33 | 700 | 0.2532 | 0.8826 | 0.9146 | 0.8983 | 0.8349 | | 0.0329 | 10.67 | 800 | 0.2576 | 0.8829 | 0.8992 | 0.8910 | 0.8474 | | 0.0229 | 12.0 | 900 | 0.2579 | 0.8827 | 0.8937 | 0.8882 | 0.8443 | | 0.0219 | 13.33 | 1000 | 0.2710 | 0.8710 | 0.8987 | 0.8846 | 0.8347 | | 0.0191 | 14.67 | 1100 | 0.2582 | 0.8889 | 0.9061 | 0.8974 | 0.8454 | | 0.0179 | 16.0 | 1200 | 0.2646 | 0.8870 | 0.9006 | 0.8938 | 0.8356 | | 0.0135 | 17.33 | 1300 | 0.2798 | 0.8949 | 0.9180 | 0.9063 | 0.8512 | | 0.007 | 18.67 | 1400 | 0.2944 | 0.8988 | 0.9091 | 0.9039 | 0.8455 | | 0.0064 | 20.0 | 1500 | 0.2822 | 0.8938 | 0.9071 | 0.9004 | 0.8452 | | 0.0089 | 21.33 | 1600 | 0.3003 | 0.8941 | 0.9101 | 0.9020 | 0.8484 | | 0.0099 | 22.67 | 1700 | 0.3008 | 0.8942 | 0.9071 | 0.9006 | 0.8439 | | 0.0069 | 24.0 | 1800 | 0.2965 | 0.8942 | 0.9071 | 0.9006 | 0.8386 | | 0.0048 | 25.33 | 1900 | 0.2973 | 0.9027 | 0.9076 | 0.9051 | 0.8501 | | 0.0069 | 26.67 | 2000 | 0.2956 | 0.8979 | 0.9086 | 0.9032 | 0.8462 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1 - Datasets 2.14.5 - Tokenizers 0.13.3