--- license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer - Multilabel metrics: - f1 - accuracy - roc_auc model-index: - name: bert-base-uncased-Research_Articles_Multilabel results: [] pipeline_tag: text-classification --- # bert-base-uncased-Research_Articles_Multilabel This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co./bert-base-uncased). It achieves the following results on the evaluation set: - Loss: 0.2039 - F1: 0.8405 - Roc Auc: 0.8976 - Accuracy: 0.7082 ## Model description Here is the link to my code for this model: https://github.com/DunnBC22/NLP_Projects/blob/main/Multilabel%20Classification/Research%20Articles/Research%20Articles%20-%20Multilabel%20Classification%20-%20Bert-Base-Uncased.ipynb ## Intended uses & limitations This model could be used to read labels with printed text. You are more than welcome to use it, but remember that it is at your own risk/peril. ## Training and evaluation data Dataset Source: https://www.kaggle.com/datasets/shivanandmn/multilabel-classification-dataset ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:| | 0.2425 | 1.0 | 2097 | 0.1948 | 0.8348 | 0.8921 | 0.7067 | | 0.1739 | 2.0 | 4194 | 0.1986 | 0.8348 | 0.8926 | 0.7072 | | 0.1328 | 3.0 | 6291 | 0.2039 | 0.8405 | 0.8976 | 0.7082 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3