--- license: apache-2.0 base_model: albert-base-v2 tags: - generated_from_trainer metrics: - accuracy model-index: - name: albert-base-v2-Malicious_URLs results: [] --- # albert-base-v2-Malicious_URLs This model is a fine-tuned version of [albert-base-v2](https://huggingface.co./albert-base-v2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8368 - Accuracy: 0.7267 - Weighted f1: 0.6482 - Micro f1: 0.7267 - Macro f1: 0.4521 - Weighted recall: 0.7267 - Micro recall: 0.7267 - Macro recall: 0.4294 - Weighted precision: 0.6262 - Micro precision: 0.7267 - Macro precision: 0.5508 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Weighted f1 | Micro f1 | Macro f1 | Weighted recall | Micro recall | Macro recall | Weighted precision | Micro precision | Macro precision | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:-----------:|:--------:|:--------:|:---------------:|:------------:|:------------:|:------------------:|:---------------:|:---------------:| | 0.7839 | 1.0 | 51087 | 0.8368 | 0.7267 | 0.6482 | 0.7267 | 0.4521 | 0.7267 | 0.7267 | 0.4294 | 0.6262 | 0.7267 | 0.5508 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3