DunnBC22 commited on
Commit
9c180ce
1 Parent(s): 9452c8f

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +69 -0
README.md ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: albert-base-v2
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - accuracy
8
+ model-index:
9
+ - name: albert-base-v2-Malicious_URLs
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ # albert-base-v2-Malicious_URLs
17
+
18
+ This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on the None dataset.
19
+ It achieves the following results on the evaluation set:
20
+ - Loss: 0.8368
21
+ - Accuracy: 0.7267
22
+ - Weighted f1: 0.6482
23
+ - Micro f1: 0.7267
24
+ - Macro f1: 0.4521
25
+ - Weighted recall: 0.7267
26
+ - Micro recall: 0.7267
27
+ - Macro recall: 0.4294
28
+ - Weighted precision: 0.6262
29
+ - Micro precision: 0.7267
30
+ - Macro precision: 0.5508
31
+
32
+ ## Model description
33
+
34
+ More information needed
35
+
36
+ ## Intended uses & limitations
37
+
38
+ More information needed
39
+
40
+ ## Training and evaluation data
41
+
42
+ More information needed
43
+
44
+ ## Training procedure
45
+
46
+ ### Training hyperparameters
47
+
48
+ The following hyperparameters were used during training:
49
+ - learning_rate: 2e-05
50
+ - train_batch_size: 8
51
+ - eval_batch_size: 8
52
+ - seed: 42
53
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
54
+ - lr_scheduler_type: linear
55
+ - num_epochs: 1
56
+
57
+ ### Training results
58
+
59
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Weighted f1 | Micro f1 | Macro f1 | Weighted recall | Micro recall | Macro recall | Weighted precision | Micro precision | Macro precision |
60
+ |:-------------:|:-----:|:-----:|:---------------:|:--------:|:-----------:|:--------:|:--------:|:---------------:|:------------:|:------------:|:------------------:|:---------------:|:---------------:|
61
+ | 0.7839 | 1.0 | 51087 | 0.8368 | 0.7267 | 0.6482 | 0.7267 | 0.4521 | 0.7267 | 0.7267 | 0.4294 | 0.6262 | 0.7267 | 0.5508 |
62
+
63
+
64
+ ### Framework versions
65
+
66
+ - Transformers 4.31.0
67
+ - Pytorch 2.0.1+cu118
68
+ - Datasets 2.14.4
69
+ - Tokenizers 0.13.3