DunnBC22 commited on
Commit
45e91f1
1 Parent(s): c6db89a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +25 -19
README.md CHANGED
@@ -3,43 +3,50 @@ license: apache-2.0
3
  base_model: albert-base-v2
4
  tags:
5
  - generated_from_trainer
 
 
6
  metrics:
7
  - accuracy
 
 
 
8
  model-index:
9
  - name: albert-base-v2-Malicious_URLs
10
  results: []
 
11
  ---
12
 
13
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
- should probably proofread and complete it, then remove this comment. -->
15
-
16
  # albert-base-v2-Malicious_URLs
17
 
18
- This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on the None dataset.
 
19
  It achieves the following results on the evaluation set:
20
  - Loss: 0.8368
21
  - Accuracy: 0.7267
22
- - Weighted f1: 0.6482
23
- - Micro f1: 0.7267
24
- - Macro f1: 0.4521
25
- - Weighted recall: 0.7267
26
- - Micro recall: 0.7267
27
- - Macro recall: 0.4294
28
- - Weighted precision: 0.6262
29
- - Micro precision: 0.7267
30
- - Macro precision: 0.5508
 
 
 
31
 
32
  ## Model description
33
 
34
- More information needed
35
 
36
  ## Intended uses & limitations
37
 
38
- More information needed
39
 
40
  ## Training and evaluation data
41
 
42
- More information needed
43
 
44
  ## Training procedure
45
 
@@ -56,14 +63,13 @@ The following hyperparameters were used during training:
56
 
57
  ### Training results
58
 
59
- | Training Loss | Epoch | Step | Validation Loss | Accuracy | Weighted f1 | Micro f1 | Macro f1 | Weighted recall | Micro recall | Macro recall | Weighted precision | Micro precision | Macro precision |
60
  |:-------------:|:-----:|:-----:|:---------------:|:--------:|:-----------:|:--------:|:--------:|:---------------:|:------------:|:------------:|:------------------:|:---------------:|:---------------:|
61
  | 0.7839 | 1.0 | 51087 | 0.8368 | 0.7267 | 0.6482 | 0.7267 | 0.4521 | 0.7267 | 0.7267 | 0.4294 | 0.6262 | 0.7267 | 0.5508 |
62
 
63
-
64
  ### Framework versions
65
 
66
  - Transformers 4.31.0
67
  - Pytorch 2.0.1+cu118
68
  - Datasets 2.14.4
69
- - Tokenizers 0.13.3
 
3
  base_model: albert-base-v2
4
  tags:
5
  - generated_from_trainer
6
+ - URL
7
+ - Security
8
  metrics:
9
  - accuracy
10
+ - recall
11
+ - precision
12
+ - f1
13
  model-index:
14
  - name: albert-base-v2-Malicious_URLs
15
  results: []
16
+ pipeline_tag: text-classification
17
  ---
18
 
 
 
 
19
  # albert-base-v2-Malicious_URLs
20
 
21
+ This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2).
22
+
23
  It achieves the following results on the evaluation set:
24
  - Loss: 0.8368
25
  - Accuracy: 0.7267
26
+ - F1:
27
+ - Weighted: 0.6482
28
+ - Micro: 0.7267
29
+ - Macro: 0.4521
30
+ - Recall
31
+ - Weighted: 0.7267
32
+ - Micro: 0.7267
33
+ - Macro: 0.4294
34
+ - Precision
35
+ - Weighted: 0.6262
36
+ - Micro: 0.7267
37
+ - Macro: 0.5508
38
 
39
  ## Model description
40
 
41
+ For more information on how it was created, check out the following link:
42
 
43
  ## Intended uses & limitations
44
 
45
+ This model is intended to demonstrate my ability to solve a complex problem using technology.
46
 
47
  ## Training and evaluation data
48
 
49
+ Dataset Source: https://www.kaggle.com/datasets/sid321axn/malicious-urls-dataset
50
 
51
  ## Training procedure
52
 
 
63
 
64
  ### Training results
65
 
66
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Weighted F1 | Micro F1 | Macro F1 | Weighted Recall | Micro Recall | Macro Recall | Weighted Precision | Micro Precision | Macro Precision |
67
  |:-------------:|:-----:|:-----:|:---------------:|:--------:|:-----------:|:--------:|:--------:|:---------------:|:------------:|:------------:|:------------------:|:---------------:|:---------------:|
68
  | 0.7839 | 1.0 | 51087 | 0.8368 | 0.7267 | 0.6482 | 0.7267 | 0.4521 | 0.7267 | 0.7267 | 0.4294 | 0.6262 | 0.7267 | 0.5508 |
69
 
 
70
  ### Framework versions
71
 
72
  - Transformers 4.31.0
73
  - Pytorch 2.0.1+cu118
74
  - Datasets 2.14.4
75
+ - Tokenizers 0.13.3