Update README.md
Browse files
README.md
CHANGED
@@ -3,43 +3,50 @@ license: apache-2.0
|
|
3 |
base_model: albert-base-v2
|
4 |
tags:
|
5 |
- generated_from_trainer
|
|
|
|
|
6 |
metrics:
|
7 |
- accuracy
|
|
|
|
|
|
|
8 |
model-index:
|
9 |
- name: albert-base-v2-Malicious_URLs
|
10 |
results: []
|
|
|
11 |
---
|
12 |
|
13 |
-
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
-
should probably proofread and complete it, then remove this comment. -->
|
15 |
-
|
16 |
# albert-base-v2-Malicious_URLs
|
17 |
|
18 |
-
This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2)
|
|
|
19 |
It achieves the following results on the evaluation set:
|
20 |
- Loss: 0.8368
|
21 |
- Accuracy: 0.7267
|
22 |
-
-
|
23 |
-
-
|
24 |
-
-
|
25 |
-
-
|
26 |
-
-
|
27 |
-
-
|
28 |
-
-
|
29 |
-
-
|
30 |
-
-
|
|
|
|
|
|
|
31 |
|
32 |
## Model description
|
33 |
|
34 |
-
|
35 |
|
36 |
## Intended uses & limitations
|
37 |
|
38 |
-
|
39 |
|
40 |
## Training and evaluation data
|
41 |
|
42 |
-
|
43 |
|
44 |
## Training procedure
|
45 |
|
@@ -56,14 +63,13 @@ The following hyperparameters were used during training:
|
|
56 |
|
57 |
### Training results
|
58 |
|
59 |
-
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Weighted
|
60 |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:-----------:|:--------:|:--------:|:---------------:|:------------:|:------------:|:------------------:|:---------------:|:---------------:|
|
61 |
| 0.7839 | 1.0 | 51087 | 0.8368 | 0.7267 | 0.6482 | 0.7267 | 0.4521 | 0.7267 | 0.7267 | 0.4294 | 0.6262 | 0.7267 | 0.5508 |
|
62 |
|
63 |
-
|
64 |
### Framework versions
|
65 |
|
66 |
- Transformers 4.31.0
|
67 |
- Pytorch 2.0.1+cu118
|
68 |
- Datasets 2.14.4
|
69 |
-
- Tokenizers 0.13.3
|
|
|
3 |
base_model: albert-base-v2
|
4 |
tags:
|
5 |
- generated_from_trainer
|
6 |
+
- URL
|
7 |
+
- Security
|
8 |
metrics:
|
9 |
- accuracy
|
10 |
+
- recall
|
11 |
+
- precision
|
12 |
+
- f1
|
13 |
model-index:
|
14 |
- name: albert-base-v2-Malicious_URLs
|
15 |
results: []
|
16 |
+
pipeline_tag: text-classification
|
17 |
---
|
18 |
|
|
|
|
|
|
|
19 |
# albert-base-v2-Malicious_URLs
|
20 |
|
21 |
+
This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2).
|
22 |
+
|
23 |
It achieves the following results on the evaluation set:
|
24 |
- Loss: 0.8368
|
25 |
- Accuracy: 0.7267
|
26 |
+
- F1:
|
27 |
+
- Weighted: 0.6482
|
28 |
+
- Micro: 0.7267
|
29 |
+
- Macro: 0.4521
|
30 |
+
- Recall
|
31 |
+
- Weighted: 0.7267
|
32 |
+
- Micro: 0.7267
|
33 |
+
- Macro: 0.4294
|
34 |
+
- Precision
|
35 |
+
- Weighted: 0.6262
|
36 |
+
- Micro: 0.7267
|
37 |
+
- Macro: 0.5508
|
38 |
|
39 |
## Model description
|
40 |
|
41 |
+
For more information on how it was created, check out the following link:
|
42 |
|
43 |
## Intended uses & limitations
|
44 |
|
45 |
+
This model is intended to demonstrate my ability to solve a complex problem using technology.
|
46 |
|
47 |
## Training and evaluation data
|
48 |
|
49 |
+
Dataset Source: https://www.kaggle.com/datasets/sid321axn/malicious-urls-dataset
|
50 |
|
51 |
## Training procedure
|
52 |
|
|
|
63 |
|
64 |
### Training results
|
65 |
|
66 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Weighted F1 | Micro F1 | Macro F1 | Weighted Recall | Micro Recall | Macro Recall | Weighted Precision | Micro Precision | Macro Precision |
|
67 |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:-----------:|:--------:|:--------:|:---------------:|:------------:|:------------:|:------------------:|:---------------:|:---------------:|
|
68 |
| 0.7839 | 1.0 | 51087 | 0.8368 | 0.7267 | 0.6482 | 0.7267 | 0.4521 | 0.7267 | 0.7267 | 0.4294 | 0.6262 | 0.7267 | 0.5508 |
|
69 |
|
|
|
70 |
### Framework versions
|
71 |
|
72 |
- Transformers 4.31.0
|
73 |
- Pytorch 2.0.1+cu118
|
74 |
- Datasets 2.14.4
|
75 |
+
- Tokenizers 0.13.3
|