DucHaiten's picture
Upload 6 files
0e1330a verified
from dataclasses import dataclass
from pathlib import Path
from typing import Optional
import numpy as np
import pandas as pd
import timm
import torch
from huggingface_hub import hf_hub_download
from huggingface_hub.utils import HfHubHTTPError
from PIL import Image
from simple_parsing import field, parse_known_args
from timm.data import create_transform, resolve_data_config
from torch import Tensor, nn
from torch.nn import functional as F
import json
torch_device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
MODEL_REPO_MAP = {
"vit": "SmilingWolf/wd-vit-tagger-v3",
"swinv2": "SmilingWolf/wd-swinv2-tagger-v3",
"convnext": "SmilingWolf/wd-convnext-tagger-v3",
}
def pil_ensure_rgb(image: Image.Image) -> Image.Image:
# convert to RGB/RGBA if not already (deals with palette images etc.)
if image.mode not in ["RGB", "RGBA"]:
image = image.convert("RGBA") if "transparency" in image.info else image.convert("RGB")
# convert RGBA to RGB with white background
if image.mode == "RGBA":
canvas = Image.new("RGBA", image.size, (255, 255, 255))
canvas.alpha_composite(image)
image = canvas.convert("RGB")
return image
def pil_pad_square(image: Image.Image) -> Image.Image:
w, h = image.size
# get the largest dimension so we can pad to a square
px = max(image.size)
# pad to square with white background
canvas = Image.new("RGB", (px, px), (255, 255, 255))
canvas.paste(image, ((px - w) // 2, (px - h) // 2))
return canvas
@dataclass
class LabelData:
names: list[str]
rating: list[np.int64]
general: list[np.int64]
character: list[np.int64]
def load_labels_hf(
repo_id: str,
revision: Optional[str] = None,
token: Optional[str] = None,
) -> LabelData:
try:
csv_path = hf_hub_download(
repo_id=repo_id, filename="selected_tags.csv", revision=revision, token=token
)
csv_path = Path(csv_path).resolve()
except HfHubHTTPError as e:
raise FileNotFoundError(f"selected_tags.csv failed to download from {repo_id}") from e
df: pd.DataFrame = pd.read_csv(csv_path, usecols=["name", "category"])
tag_data = LabelData(
names=df["name"].tolist(),
rating=list(np.where(df["category"] == 9)[0]),
general=list(np.where(df["category"] == 0)[0]),
character=list(np.where(df["category"] == 4)[0]),
)
return tag_data
def get_tags(
probs: Tensor,
labels: LabelData,
gen_threshold: float,
char_threshold: float,
):
# Convert indices+probs to labels
probs = list(zip(labels.names, probs.numpy()))
# First 4 labels are actually ratings
rating_labels = dict([probs[i] for i in labels.rating])
# General labels, pick any where prediction confidence > threshold
gen_labels = [probs[i] for i in labels.general]
gen_labels = dict([x for x in gen_labels if x[1] > gen_threshold])
gen_labels = dict(sorted(gen_labels.items(), key=lambda item: item[1], reverse=True))
# Character labels, pick any where prediction confidence > threshold
char_labels = [probs[i] for i in labels.character]
char_labels = dict([x for x in char_labels if x[1] > char_threshold])
char_labels = dict(sorted(char_labels.items(), key=lambda item: item[1], reverse=True))
# Combine general and character labels, sort by confidence
combined_names = [x for x in gen_labels]
combined_names.extend([x for x in char_labels])
# Convert to a string suitable for use as a training caption
caption = ", ".join(combined_names)
taglist = caption.replace("_", " ").replace("(", "\(").replace(")", "\)")
return caption, taglist, rating_labels, char_labels, gen_labels
@dataclass
class ScriptOptions:
image_file: Path = field(positional=True)
model: str = field(default="vit")
gen_threshold: float = field(default=0.35)
char_threshold: float = field(default=0.75)
def main(opts: ScriptOptions):
repo_id = MODEL_REPO_MAP.get(opts.model)
image_path = Path(opts.image_file).resolve()
if not image_path.is_file():
raise FileNotFoundError(f"Image file not found: {image_path}")
print(f"Loading model '{opts.model}' from '{repo_id}'...")
model: nn.Module = timm.create_model("hf-hub:" + repo_id).eval()
state_dict = timm.models.load_state_dict_from_hf(repo_id)
model.load_state_dict(state_dict)
print("Loading tag list...")
labels: LabelData = load_labels_hf(repo_id=repo_id)
print("Creating data transform...")
transform = create_transform(**resolve_data_config(model.pretrained_cfg, model=model))
print("Loading image and preprocessing...")
# get image
img_input: Image.Image = Image.open(image_path)
# ensure image is RGB
img_input = pil_ensure_rgb(img_input)
# pad to square with white background
img_input = pil_pad_square(img_input)
# run the model's input transform to convert to tensor and rescale
inputs: Tensor = transform(img_input).unsqueeze(0)
# NCHW image RGB to BGR
inputs = inputs[:, [2, 1, 0]]
print("Running inference...")
with torch.inference_mode():
# move model to GPU, if available
if torch_device.type != "cpu":
model = model.to(torch_device)
inputs = inputs.to(torch_device)
# run the model
outputs = model.forward(inputs)
# apply the final activation function (timm doesn't support doing this internally)
outputs = F.sigmoid(outputs)
# move inputs, outputs, và model về CPU nếu đang ở trên GPU
if torch_device.type != "cpu":
inputs = inputs.to("cpu")
outputs = outputs.to("cpu")
model = model.to("cpu")
print("Processing results...")
# Đọc giá trị từ config.json
with open('config.json', 'r') as config_file:
config_data = json.load(config_file)
gen_threshold = config_data.get('general_threshold', 0.35)
char_threshold = config_data.get('character_threshold', 0.75)
caption, taglist, ratings, character, general = get_tags(
probs=outputs.squeeze(0),
labels=labels,
gen_threshold=gen_threshold,
char_threshold=char_threshold,
)
print("--------")
print(f"Caption: {caption}")
print("--------")
print(f"Tags: {taglist}")
print("--------")
print("Ratings:")
for k, v in ratings.items():
print(f" {k}: {v:.3f}")
print("--------")
print(f"Character tags (threshold={char_threshold}):")
for k, v in character.items():
print(f" {k}: {v:.3f}")
print("--------")
print(f"General tags (threshold={gen_threshold}):")
for k, v in general.items():
print(f" {k}: {v:.3f}")
print("Done!")
if __name__ == "__main__":
opts, _ = parse_known_args(ScriptOptions)
if opts.model not in MODEL_REPO_MAP:
print(f"Available models: {list(MODEL_REPO_MAP.keys())}")
raise ValueError(f"Unknown model name '{opts.model}'")
main(opts)