File size: 4,186 Bytes
07926a3
 
 
 
 
 
 
a374e82
07926a3
a374e82
 
 
07926a3
48e4298
07926a3
 
 
8178fca
 
07926a3
 
 
 
 
 
8178fca
 
 
 
 
 
 
 
 
 
 
 
 
e55a21a
 
 
 
 
 
 
8178fca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
07926a3
 
 
 
 
 
 
 
 
 
 
 
e55a21a
07926a3
e55a21a
07926a3
e55a21a
07926a3
e55a21a
07926a3
e55a21a
07926a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
---
language:
- sl
license: apache-2.0
tags:
- automatic-speech-recognition
- generated_from_trainer
- hf-asr-leaderboard
- model_for_talk
- mozilla-foundation/common_voice_8_0
- robust-speech-event
- sl
datasets:
- mozilla-foundation/common_voice_8_0
model-index:
- name: wav2vec2-large-xls-r-300m-sl-with-LM-v1
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Common Voice 8
      type: mozilla-foundation/common_voice_8_0
      args: sl
    metrics:
    - name: Test WER
      type: wer
      value: 0.20626555409164105
    - name: Test CER
      type: cer
      value: 0.051648321634392154
    - name: Test WER (+LM)
      type: wer
      value: 0.13482652613087395
    - name: Test CER (+LM)
      type: cer
      value: 0.038838663862562475
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Robust Speech Event - Dev Data
      type: speech-recognition-community-v2/dev_data
      args: sl
    metrics:
    - name: Dev WER
      type: wer
      value: 0.5406156320830592
    - name: Dev CER
      type: cer
      value: 0.22249723590310583
    - name: Dev WER (+LM)
      type: wer
      value: 0.49783147459727384
    - name: Dev CER (+LM)
      type: cer
      value: 0.1591062599627158
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Robust Speech Event - Test Data
      type: speech-recognition-community-v2/eval_data
      args: sl
    metrics:
    - name: Test WER
      type: wer
      value: 46.17
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# 

This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co./facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - SL dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2756
- Wer: 0.2279

### Evaluation Commands

1. To evaluate on mozilla-foundation/common_voice_8_0 with test split

python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-sl-with-LM-v1 --dataset mozilla-foundation/common_voice_8_0 --config sl --split test --log_outputs

2. To evaluate on speech-recognition-community-v2/dev_data

python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-sl-with-LM-v1 --dataset speech-recognition-community-v2/dev_data --config sl --split validation --chunk_length_s 10 --stride_length_s 1

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 7.1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 100.0
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer    |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 3.3881        | 6.1   | 500  | 2.9710          | 1.0    |
| 2.6401        | 12.2  | 1000 | 1.7677          | 0.9734 |
| 1.5152        | 18.29 | 1500 | 0.5564          | 0.6011 |
| 1.2191        | 24.39 | 2000 | 0.4319          | 0.4390 |
| 1.0237        | 30.49 | 2500 | 0.3141          | 0.3175 |
| 0.8892        | 36.59 | 3000 | 0.2748          | 0.2689 |
| 0.8296        | 42.68 | 3500 | 0.2680          | 0.2534 |
| 0.7602        | 48.78 | 4000 | 0.2820          | 0.2506 |
| 0.7186        | 54.88 | 4500 | 0.2672          | 0.2398 |
| 0.6887        | 60.98 | 5000 | 0.2729          | 0.2402 |
| 0.6507        | 67.07 | 5500 | 0.2767          | 0.2361 |
| 0.6226        | 73.17 | 6000 | 0.2817          | 0.2332 |
| 0.6024        | 79.27 | 6500 | 0.2679          | 0.2279 |
| 0.5787        | 85.37 | 7000 | 0.2837          | 0.2316 |
| 0.5744        | 91.46 | 7500 | 0.2838          | 0.2284 |
| 0.5556        | 97.56 | 8000 | 0.2763          | 0.2281 |


### Framework versions

- Transformers 4.17.0.dev0
- Pytorch 1.10.2+cu102
- Datasets 1.18.2.dev0
- Tokenizers 0.11.0