DrishtiSharma
commited on
Commit
•
2bfa38e
1
Parent(s):
8fac508
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- common_voice
|
7 |
+
model-index:
|
8 |
+
- name: wav2vec2-large-xls-r-300m-or-dx12
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# wav2vec2-large-xls-r-300m-or-dx12
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 1.4638
|
20 |
+
- Wer: 0.5602
|
21 |
+
|
22 |
+
## Model description
|
23 |
+
|
24 |
+
More information needed
|
25 |
+
|
26 |
+
## Intended uses & limitations
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Training and evaluation data
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Training procedure
|
35 |
+
|
36 |
+
### Training hyperparameters
|
37 |
+
|
38 |
+
The following hyperparameters were used during training:
|
39 |
+
- learning_rate: 0.0004
|
40 |
+
- train_batch_size: 16
|
41 |
+
- eval_batch_size: 8
|
42 |
+
- seed: 42
|
43 |
+
- gradient_accumulation_steps: 2
|
44 |
+
- total_train_batch_size: 32
|
45 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
46 |
+
- lr_scheduler_type: linear
|
47 |
+
- lr_scheduler_warmup_steps: 1000
|
48 |
+
- num_epochs: 200
|
49 |
+
- mixed_precision_training: Native AMP
|
50 |
+
|
51 |
+
### Training results
|
52 |
+
|
53 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
54 |
+
|:-------------:|:------:|:----:|:---------------:|:------:|
|
55 |
+
| 13.5059 | 4.17 | 100 | 10.3789 | 1.0 |
|
56 |
+
| 4.5964 | 8.33 | 200 | 4.3294 | 1.0 |
|
57 |
+
| 3.4448 | 12.5 | 300 | 3.7903 | 1.0 |
|
58 |
+
| 3.3683 | 16.67 | 400 | 3.5289 | 1.0 |
|
59 |
+
| 2.042 | 20.83 | 500 | 1.1531 | 0.7857 |
|
60 |
+
| 0.5721 | 25.0 | 600 | 1.0267 | 0.7646 |
|
61 |
+
| 0.3274 | 29.17 | 700 | 1.0773 | 0.6938 |
|
62 |
+
| 0.2466 | 33.33 | 800 | 1.0323 | 0.6647 |
|
63 |
+
| 0.2047 | 37.5 | 900 | 1.1255 | 0.6733 |
|
64 |
+
| 0.1847 | 41.67 | 1000 | 1.1194 | 0.6515 |
|
65 |
+
| 0.1453 | 45.83 | 1100 | 1.1215 | 0.6601 |
|
66 |
+
| 0.1367 | 50.0 | 1200 | 1.1898 | 0.6627 |
|
67 |
+
| 0.1334 | 54.17 | 1300 | 1.3082 | 0.6687 |
|
68 |
+
| 0.1041 | 58.33 | 1400 | 1.2514 | 0.6177 |
|
69 |
+
| 0.1024 | 62.5 | 1500 | 1.2055 | 0.6528 |
|
70 |
+
| 0.0919 | 66.67 | 1600 | 1.4125 | 0.6369 |
|
71 |
+
| 0.074 | 70.83 | 1700 | 1.4006 | 0.6634 |
|
72 |
+
| 0.0681 | 75.0 | 1800 | 1.3943 | 0.6131 |
|
73 |
+
| 0.0709 | 79.17 | 1900 | 1.3545 | 0.6296 |
|
74 |
+
| 0.064 | 83.33 | 2000 | 1.2437 | 0.6237 |
|
75 |
+
| 0.0552 | 87.5 | 2100 | 1.3762 | 0.6190 |
|
76 |
+
| 0.056 | 91.67 | 2200 | 1.3763 | 0.6323 |
|
77 |
+
| 0.0514 | 95.83 | 2300 | 1.2897 | 0.6164 |
|
78 |
+
| 0.0409 | 100.0 | 2400 | 1.4257 | 0.6104 |
|
79 |
+
| 0.0379 | 104.17 | 2500 | 1.4219 | 0.5853 |
|
80 |
+
| 0.0367 | 108.33 | 2600 | 1.4361 | 0.6032 |
|
81 |
+
| 0.0412 | 112.5 | 2700 | 1.4713 | 0.6098 |
|
82 |
+
| 0.0353 | 116.67 | 2800 | 1.4132 | 0.6369 |
|
83 |
+
| 0.0336 | 120.83 | 2900 | 1.5210 | 0.6098 |
|
84 |
+
| 0.0302 | 125.0 | 3000 | 1.4686 | 0.5939 |
|
85 |
+
| 0.0398 | 129.17 | 3100 | 1.5456 | 0.6204 |
|
86 |
+
| 0.0291 | 133.33 | 3200 | 1.4111 | 0.5827 |
|
87 |
+
| 0.0247 | 137.5 | 3300 | 1.3866 | 0.6151 |
|
88 |
+
| 0.0196 | 141.67 | 3400 | 1.4513 | 0.5880 |
|
89 |
+
| 0.0218 | 145.83 | 3500 | 1.5100 | 0.5899 |
|
90 |
+
| 0.0196 | 150.0 | 3600 | 1.4936 | 0.5999 |
|
91 |
+
| 0.0164 | 154.17 | 3700 | 1.5012 | 0.5701 |
|
92 |
+
| 0.0168 | 158.33 | 3800 | 1.5601 | 0.5919 |
|
93 |
+
| 0.0151 | 162.5 | 3900 | 1.4891 | 0.5761 |
|
94 |
+
| 0.0137 | 166.67 | 4000 | 1.4839 | 0.5800 |
|
95 |
+
| 0.0143 | 170.83 | 4100 | 1.4826 | 0.5754 |
|
96 |
+
| 0.0114 | 175.0 | 4200 | 1.4950 | 0.5708 |
|
97 |
+
| 0.0092 | 179.17 | 4300 | 1.5008 | 0.5694 |
|
98 |
+
| 0.0104 | 183.33 | 4400 | 1.4774 | 0.5728 |
|
99 |
+
| 0.0096 | 187.5 | 4500 | 1.4948 | 0.5767 |
|
100 |
+
| 0.0105 | 191.67 | 4600 | 1.4557 | 0.5694 |
|
101 |
+
| 0.009 | 195.83 | 4700 | 1.4615 | 0.5628 |
|
102 |
+
| 0.0081 | 200.0 | 4800 | 1.4638 | 0.5602 |
|
103 |
+
|
104 |
+
|
105 |
+
### Framework versions
|
106 |
+
|
107 |
+
- Transformers 4.16.2
|
108 |
+
- Pytorch 1.10.0+cu111
|
109 |
+
- Datasets 1.18.3
|
110 |
+
- Tokenizers 0.11.0
|