File size: 3,449 Bytes
03aa07e
b9f7a25
 
03aa07e
 
b9f7a25
 
03aa07e
b9f7a25
 
 
368adc8
03aa07e
c0c2c5c
03aa07e
 
b9f7a25
368adc8
 
b9f7a25
 
 
 
 
 
368adc8
 
 
 
 
 
 
e0f6508
 
 
 
 
 
 
368adc8
 
 
 
 
 
03aa07e
 
 
 
 
 
 
47398e8
03aa07e
 
 
 
47398e8
03aa07e
47398e8
03aa07e
47398e8
03aa07e
47398e8
03aa07e
47398e8
03aa07e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57a910d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
---
language:
- hsb
license: apache-2.0
tags:
- automatic-speech-recognition
- mozilla-foundation/common_voice_8_0
- generated_from_trainer
- hsb
- robust-speech-event
- model_for_talk
- hf-asr-leaderboard
datasets:
- mozilla-foundation/common_voice_8_0
model-index:
- name: wav2vec2-large-xls-r-300m-hsb-v2
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Common Voice 8
      type: mozilla-foundation/common_voice_8_0
      args: hsb
    metrics:
    - name: Test WER
      type: wer
      value: 0.4654228855721393
    - name: Test CER
      type: cer
      value: 0.11351049990708047
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Robust Speech Event - Dev Data
      type: speech-recognition-community-v2/dev_data
      args: hsb
    metrics:
    - name: Test WER
      type: wer
      value: NA
    - name: Test CER
      type: cer
      value: NA
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-large-xls-r-300m-hsb-v2

This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co./facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - HSB dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5328
- Wer: 0.4596

### Evaluation Commands

1. To evaluate on mozilla-foundation/common_voice_8_0 with test split

python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-hsb-v2 --dataset mozilla-foundation/common_voice_8_0 --config hsb --split test --log_outputs

2. To evaluate on speech-recognition-community-v2/dev_data

Upper Sorbian (hsb) not found in speech-recognition-community-v2/dev_data


### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.00045
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 50
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer    |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 8.5979        | 3.23  | 100  | 3.5602          | 1.0    |
| 3.303         | 6.45  | 200  | 3.2238          | 1.0    |
| 3.2034        | 9.68  | 300  | 3.2002          | 0.9888 |
| 2.7986        | 12.9  | 400  | 1.2408          | 0.9210 |
| 1.3869        | 16.13 | 500  | 0.7973          | 0.7462 |
| 1.0228        | 19.35 | 600  | 0.6722          | 0.6788 |
| 0.8311        | 22.58 | 700  | 0.6100          | 0.6150 |
| 0.717         | 25.81 | 800  | 0.6236          | 0.6013 |
| 0.6264        | 29.03 | 900  | 0.6031          | 0.5575 |
| 0.5494        | 32.26 | 1000 | 0.5656          | 0.5309 |
| 0.4781        | 35.48 | 1100 | 0.5289          | 0.4996 |
| 0.4311        | 38.71 | 1200 | 0.5375          | 0.4768 |
| 0.3902        | 41.94 | 1300 | 0.5246          | 0.4703 |
| 0.3508        | 45.16 | 1400 | 0.5382          | 0.4696 |
| 0.3199        | 48.39 | 1500 | 0.5328          | 0.4596 |


### Framework versions

- Transformers 4.16.1
- Pytorch 1.10.0+cu111
- Datasets 1.18.2
- Tokenizers 0.11.0