--- license: apache-2.0 tags: - image-classification - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: finetuned-SwinT-Indian-Food-Classification-v2 results: - task: name: Image Classification type: image-classification dataset: name: Indian-Food-Images type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9458023379383634 --- # finetuned-SwinT-Indian-Food-Classification-v2 This model is a fine-tuned version of [microsoft/swin-base-patch4-window7-224-in22k](https://huggingface.co./microsoft/swin-base-patch4-window7-224-in22k) on the Indian-Food-Images dataset. It achieves the following results on the evaluation set: - Loss: 0.2226 - Accuracy: 0.9458 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.9351 | 0.3 | 100 | 0.6017 | 0.8363 | | 0.5667 | 0.6 | 200 | 0.4384 | 0.8767 | | 0.5548 | 0.9 | 300 | 0.4215 | 0.8767 | | 0.5516 | 1.2 | 400 | 0.4290 | 0.8735 | | 0.3782 | 1.5 | 500 | 0.3502 | 0.8980 | | 0.3115 | 1.8 | 600 | 0.3780 | 0.8937 | | 0.4229 | 2.1 | 700 | 0.3545 | 0.8905 | | 0.3832 | 2.4 | 800 | 0.3446 | 0.9086 | | 0.2745 | 2.7 | 900 | 0.3299 | 0.9150 | | 0.2063 | 3.0 | 1000 | 0.2592 | 0.9277 | | 0.2077 | 3.3 | 1100 | 0.3772 | 0.9150 | | 0.2041 | 3.6 | 1200 | 0.2855 | 0.9214 | | 0.2541 | 3.9 | 1300 | 0.2502 | 0.9330 | | 0.1203 | 4.2 | 1400 | 0.2577 | 0.9362 | | 0.1594 | 4.5 | 1500 | 0.2226 | 0.9458 | | 0.1015 | 4.8 | 1600 | 0.2368 | 0.9437 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1