#!/usr/bin/env python3 # 1/17/2024 # Charles O. Goddard # https://huggingface.co./chargoddard/internlm2-7b-llama/raw/main/convert_weights.py """Convert internlm2 weights to Llama format.""" import json import os import einops import tqdm from mergekit.io import LazyTensorLoader, TensorWriter from mergekit.common import ModelReference from transformers import LlamaTokenizer MODEL_IN = "/home/alpha/Models/Raw/internlm_internlm2_5-20b" OUT_PATH = "/home/alpha/Models/Raw/internlm_internlm2_5-20b-llama-3.1-ified" model_ref = ModelReference.parse(MODEL_IN) cfg = model_ref.config(trust_remote_code=True) head_dim = cfg.hidden_size // cfg.num_attention_heads num_key_value_groups = cfg.num_attention_heads // cfg.num_key_value_heads loader = LazyTensorLoader(model_ref.tensor_index(), lazy_unpickle=True) writer = TensorWriter(OUT_PATH) SIMPLE_REPLACEMENTS = { "feed_forward.w1": "mlp.gate_proj", "feed_forward.w2": "mlp.down_proj", "feed_forward.w3": "mlp.up_proj", "attention.wo": "self_attn.o_proj", "ffn_norm": "post_attention_layernorm", "attention_norm": "input_layernorm", "tok_embeddings": "embed_tokens", "output.weight": "lm_head.weight", } for tensor_name in tqdm.tqdm(loader.index.tensor_paths): tensor = loader.get_tensor(tensor_name) if "attention.wqkv" in tensor_name: # make me think about tensor shapes will you >:( # ((cfg.num_attention_heads + 2 * cfg.num_key_value_heads) * head_dim, cfg.hidden_size) x (batch_sz, sq_len, cfg.hidden_size) # -> (batch_sz, sq_len, (cfg.num_attention_heads + 2 * cfg.num_key_value_heads) * head_dim) # qkv_states = rearrange( # qkv_states, # "b q (h gs d) -> b q h gs d", # gs=2 + self.num_key_value_groups, # d=self.head_dim, # ) # ->(batch_sz, sq_len, h, 2 + self.num_key_value_groups, head_dim) qkv_vecs = einops.rearrange( tensor, "(h gs d) z -> h gs d z", gs=2 + num_key_value_groups, d=head_dim ) q_proj = ( qkv_vecs[:, :num_key_value_groups, ...] .reshape(-1, cfg.hidden_size) .contiguous() ) k_proj = qkv_vecs[:, -2, ...].reshape(-1, cfg.hidden_size).contiguous() v_proj = qkv_vecs[:, -1, ...].reshape(-1, cfg.hidden_size).contiguous() assert k_proj.shape == v_proj.shape writer.save_tensor( tensor_name.replace("attention.wqkv", "self_attn.q_proj"), q_proj, clone=True, ) writer.save_tensor( tensor_name.replace("attention.wqkv", "self_attn.k_proj"), k_proj, clone=True, ) writer.save_tensor( tensor_name.replace("attention.wqkv", "self_attn.v_proj"), v_proj, clone=True, ) continue out_name = tensor_name for pattern, sub in SIMPLE_REPLACEMENTS.items(): if pattern in out_name: out_name = out_name.replace(pattern, sub) writer.save_tensor(out_name, tensor) writer.finalize() cfg_dict = json.loads(cfg.to_json_string()) del cfg_dict["auto_map"] cfg_dict["architectures"] = ["LlamaForCausalLM"] cfg_dict["model_type"] = "llama" # if "rope_scaling" in cfg_dict and cfg_dict["rope_scaling"]["factor"] == 1.0: # del cfg_dict["rope_scaling"] with open(os.path.join(OUT_PATH, "config.json"), "w", encoding="utf-8") as fp: json.dump(cfg_dict, fp, indent=2) # InternLMTokenizer differences: # 1. clean_up_tokenization() hardcoded to always be called # 2. might prepend a space to some tokens that LlamaTokenizer doesn't if they're the first token # 1 is easy to fix, 2... is not important tok = LlamaTokenizer.from_pretrained(MODEL_IN, trust_remote_code=False, legacy=True) tok.clean_up_tokenization_spaces = True tok.save_pretrained(OUT_PATH)