DouglasPontes commited on
Commit
2cc392a
·
verified ·
1 Parent(s): 6ab56c1

Model save

Browse files
Files changed (2) hide show
  1. README.md +356 -0
  2. pytorch_model.bin +1 -1
README.md ADDED
@@ -0,0 +1,356 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ base_model: cardiffnlp/twitter-roberta-base-2019-90m
4
+ tags:
5
+ - generated_from_trainer
6
+ model-index:
7
+ - name: 2020-Q3-75p-filtered
8
+ results: []
9
+ ---
10
+
11
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
+ should probably proofread and complete it, then remove this comment. -->
13
+
14
+ # 2020-Q3-75p-filtered
15
+
16
+ This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base-2019-90m](https://huggingface.co/cardiffnlp/twitter-roberta-base-2019-90m) on an unknown dataset.
17
+ It achieves the following results on the evaluation set:
18
+ - Loss: 3.1129
19
+
20
+ ## Model description
21
+
22
+ More information needed
23
+
24
+ ## Intended uses & limitations
25
+
26
+ More information needed
27
+
28
+ ## Training and evaluation data
29
+
30
+ More information needed
31
+
32
+ ## Training procedure
33
+
34
+ ### Training hyperparameters
35
+
36
+ The following hyperparameters were used during training:
37
+ - learning_rate: 4.1e-07
38
+ - train_batch_size: 16
39
+ - eval_batch_size: 16
40
+ - seed: 42
41
+ - optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08
42
+ - lr_scheduler_type: linear
43
+ - training_steps: 2400000
44
+
45
+ ### Training results
46
+
47
+ | Training Loss | Epoch | Step | Validation Loss |
48
+ |:-------------:|:-----:|:-------:|:---------------:|
49
+ | No log | 0.07 | 8000 | 3.4513 |
50
+ | 3.6645 | 0.14 | 16000 | 3.3790 |
51
+ | 3.6645 | 0.2 | 24000 | 3.3226 |
52
+ | 3.4678 | 0.27 | 32000 | 3.2901 |
53
+ | 3.4678 | 0.34 | 40000 | 3.2590 |
54
+ | 3.4118 | 0.41 | 48000 | 3.2534 |
55
+ | 3.4118 | 0.47 | 56000 | 3.2357 |
56
+ | 3.3843 | 0.54 | 64000 | 3.2228 |
57
+ | 3.3843 | 0.61 | 72000 | 3.2331 |
58
+ | 3.3633 | 0.68 | 80000 | 3.2047 |
59
+ | 3.3633 | 0.74 | 88000 | 3.2138 |
60
+ | 3.3474 | 0.81 | 96000 | 3.2050 |
61
+ | 3.3474 | 0.88 | 104000 | 3.2051 |
62
+ | 3.3414 | 0.95 | 112000 | 3.1930 |
63
+ | 3.3414 | 1.01 | 120000 | 3.2002 |
64
+ | 3.335 | 1.08 | 128000 | 3.1920 |
65
+ | 3.335 | 1.15 | 136000 | 3.1914 |
66
+ | 3.3283 | 1.22 | 144000 | 3.1853 |
67
+ | 3.3283 | 1.28 | 152000 | 3.1825 |
68
+ | 3.3276 | 1.35 | 160000 | 3.1827 |
69
+ | 3.3276 | 1.42 | 168000 | 3.1756 |
70
+ | 3.323 | 1.49 | 176000 | 3.1865 |
71
+ | 3.323 | 1.56 | 184000 | 3.1749 |
72
+ | 3.3275 | 1.62 | 192000 | 3.1782 |
73
+ | 3.3275 | 1.69 | 200000 | 3.1676 |
74
+ | 3.3309 | 1.76 | 208000 | 3.1832 |
75
+ | 3.3309 | 1.83 | 216000 | 3.1744 |
76
+ | 3.3166 | 1.89 | 224000 | 3.1645 |
77
+ | 3.3166 | 1.96 | 232000 | 3.1770 |
78
+ | 3.3206 | 2.03 | 240000 | 3.1656 |
79
+ | 3.3206 | 2.1 | 248000 | 3.1561 |
80
+ | 3.3228 | 2.16 | 256000 | 3.1665 |
81
+ | 3.3228 | 2.23 | 264000 | 3.1657 |
82
+ | 3.3208 | 2.3 | 272000 | 3.1693 |
83
+ | 3.3208 | 2.37 | 280000 | 3.1778 |
84
+ | 3.3106 | 2.43 | 288000 | 3.1760 |
85
+ | 3.3106 | 2.5 | 296000 | 3.1664 |
86
+ | 3.3189 | 2.57 | 304000 | 3.1677 |
87
+ | 3.3189 | 2.64 | 312000 | 3.1600 |
88
+ | 3.319 | 2.7 | 320000 | 3.1570 |
89
+ | 3.319 | 2.77 | 328000 | 3.1699 |
90
+ | 3.3236 | 2.84 | 336000 | 3.1578 |
91
+ | 3.3236 | 2.91 | 344000 | 3.1665 |
92
+ | 3.3205 | 2.98 | 352000 | 3.1558 |
93
+ | 3.3205 | 3.04 | 360000 | 3.1678 |
94
+ | 3.3114 | 3.11 | 368000 | 3.1597 |
95
+ | 3.3114 | 3.18 | 376000 | 3.1618 |
96
+ | 3.3067 | 3.25 | 384000 | 3.1584 |
97
+ | 3.3067 | 3.31 | 392000 | 3.1597 |
98
+ | 3.314 | 3.38 | 400000 | 3.1565 |
99
+ | 3.314 | 3.45 | 408000 | 3.1612 |
100
+ | 3.3183 | 3.52 | 416000 | 3.1637 |
101
+ | 3.3183 | 3.58 | 424000 | 3.1569 |
102
+ | 3.318 | 3.65 | 432000 | 3.1576 |
103
+ | 3.318 | 3.72 | 440000 | 3.1639 |
104
+ | 3.3114 | 3.79 | 448000 | 3.1460 |
105
+ | 3.3114 | 3.85 | 456000 | 3.1611 |
106
+ | 3.3068 | 3.92 | 464000 | 3.1587 |
107
+ | 3.3068 | 3.99 | 472000 | 3.1542 |
108
+ | 3.3166 | 4.06 | 480000 | 3.1422 |
109
+ | 3.3166 | 4.12 | 488000 | 3.1604 |
110
+ | 3.3057 | 4.19 | 496000 | 3.1587 |
111
+ | 3.3057 | 4.26 | 504000 | 3.1576 |
112
+ | 3.3176 | 4.33 | 512000 | 3.1602 |
113
+ | 3.3176 | 4.4 | 520000 | 3.1544 |
114
+ | 3.3126 | 4.46 | 528000 | 3.1478 |
115
+ | 3.3126 | 4.53 | 536000 | 3.1520 |
116
+ | 3.3044 | 4.6 | 544000 | 3.1581 |
117
+ | 3.3044 | 4.67 | 552000 | 3.1625 |
118
+ | 3.3118 | 4.73 | 560000 | 3.1510 |
119
+ | 3.3118 | 4.8 | 568000 | 3.1548 |
120
+ | 3.3085 | 4.87 | 576000 | 3.1539 |
121
+ | 3.3085 | 4.94 | 584000 | 3.1503 |
122
+ | 3.3014 | 5.0 | 592000 | 3.1504 |
123
+ | 3.3014 | 5.07 | 600000 | 3.1534 |
124
+ | 3.3115 | 5.14 | 608000 | 3.1551 |
125
+ | 3.3115 | 5.21 | 616000 | 3.1493 |
126
+ | 3.3079 | 5.27 | 624000 | 3.1427 |
127
+ | 3.3079 | 5.34 | 632000 | 3.1500 |
128
+ | 3.3138 | 5.41 | 640000 | 3.1546 |
129
+ | 3.3138 | 5.48 | 648000 | 3.1482 |
130
+ | 3.3096 | 5.54 | 656000 | 3.1346 |
131
+ | 3.3096 | 5.61 | 664000 | 3.1328 |
132
+ | 3.3121 | 5.68 | 672000 | 3.1500 |
133
+ | 3.3121 | 5.75 | 680000 | 3.1312 |
134
+ | 3.3195 | 5.82 | 688000 | 3.1440 |
135
+ | 3.3195 | 5.88 | 696000 | 3.1191 |
136
+ | 3.3091 | 5.95 | 704000 | 3.1397 |
137
+ | 3.3091 | 6.02 | 712000 | 3.1485 |
138
+ | 3.3089 | 6.09 | 720000 | 3.1340 |
139
+ | 3.3089 | 6.15 | 728000 | 3.1385 |
140
+ | 3.3062 | 6.22 | 736000 | 3.1358 |
141
+ | 3.3062 | 6.29 | 744000 | 3.1296 |
142
+ | 3.3102 | 6.36 | 752000 | 3.1260 |
143
+ | 3.3102 | 6.42 | 760000 | 3.1428 |
144
+ | 3.3088 | 6.49 | 768000 | 3.1372 |
145
+ | 3.3088 | 6.56 | 776000 | 3.1404 |
146
+ | 3.3096 | 6.63 | 784000 | 3.1362 |
147
+ | 3.3096 | 6.69 | 792000 | 3.1408 |
148
+ | 3.3079 | 6.76 | 800000 | 3.1350 |
149
+ | 3.3079 | 6.83 | 808000 | 3.1461 |
150
+ | 3.3099 | 6.9 | 816000 | 3.1420 |
151
+ | 3.3099 | 6.96 | 824000 | 3.1213 |
152
+ | 3.3015 | 7.03 | 832000 | 3.1366 |
153
+ | 3.3015 | 7.1 | 840000 | 3.1401 |
154
+ | 3.3045 | 7.17 | 848000 | 3.1295 |
155
+ | 3.3045 | 7.24 | 856000 | 3.1323 |
156
+ | 3.3085 | 7.3 | 864000 | 3.1368 |
157
+ | 3.3085 | 7.37 | 872000 | 3.1275 |
158
+ | 3.3061 | 7.44 | 880000 | 3.1326 |
159
+ | 3.3061 | 7.51 | 888000 | 3.1377 |
160
+ | 3.309 | 7.57 | 896000 | 3.1407 |
161
+ | 3.309 | 7.64 | 904000 | 3.1324 |
162
+ | 3.3024 | 7.71 | 912000 | 3.1187 |
163
+ | 3.3024 | 7.78 | 920000 | 3.1514 |
164
+ | 3.2955 | 7.84 | 928000 | 3.1351 |
165
+ | 3.2955 | 7.91 | 936000 | 3.1308 |
166
+ | 3.3122 | 7.98 | 944000 | 3.1405 |
167
+ | 3.3122 | 8.05 | 952000 | 3.1291 |
168
+ | 3.304 | 8.11 | 960000 | 3.1244 |
169
+ | 3.304 | 8.18 | 968000 | 3.1409 |
170
+ | 3.3046 | 8.25 | 976000 | 3.1355 |
171
+ | 3.3046 | 8.32 | 984000 | 3.1416 |
172
+ | 3.3022 | 8.38 | 992000 | 3.1258 |
173
+ | 3.3022 | 8.45 | 1000000 | 3.1332 |
174
+ | 3.3004 | 8.52 | 1008000 | 3.1430 |
175
+ | 3.3004 | 8.59 | 1016000 | 3.1282 |
176
+ | 3.3045 | 8.66 | 1024000 | 3.1287 |
177
+ | 3.3045 | 8.72 | 1032000 | 3.1368 |
178
+ | 3.3047 | 8.79 | 1040000 | 3.1362 |
179
+ | 3.3047 | 8.86 | 1048000 | 3.1268 |
180
+ | 3.3044 | 8.93 | 1056000 | 3.1329 |
181
+ | 3.3044 | 8.99 | 1064000 | 3.1245 |
182
+ | 3.2961 | 9.06 | 1072000 | 3.1271 |
183
+ | 3.2961 | 9.13 | 1080000 | 3.1300 |
184
+ | 3.2999 | 9.2 | 1088000 | 3.1369 |
185
+ | 3.2999 | 9.26 | 1096000 | 3.1425 |
186
+ | 3.3012 | 9.33 | 1104000 | 3.1213 |
187
+ | 3.3012 | 9.4 | 1112000 | 3.1285 |
188
+ | 3.3008 | 9.47 | 1120000 | 3.1353 |
189
+ | 3.3008 | 9.53 | 1128000 | 3.1367 |
190
+ | 3.3028 | 9.6 | 1136000 | 3.1294 |
191
+ | 3.3028 | 9.67 | 1144000 | 3.1340 |
192
+ | 3.3043 | 9.74 | 1152000 | 3.1330 |
193
+ | 3.3043 | 9.8 | 1160000 | 3.1380 |
194
+ | 3.2976 | 9.87 | 1168000 | 3.1198 |
195
+ | 3.2976 | 9.94 | 1176000 | 3.1290 |
196
+ | 3.3048 | 10.01 | 1184000 | 3.1458 |
197
+ | 3.3048 | 10.08 | 1192000 | 3.1274 |
198
+ | 3.3038 | 10.14 | 1200000 | 3.1181 |
199
+ | 3.3038 | 10.21 | 1208000 | 3.1279 |
200
+ | 3.3066 | 10.28 | 1216000 | 3.1230 |
201
+ | 3.3066 | 10.35 | 1224000 | 3.1320 |
202
+ | 3.3019 | 10.41 | 1232000 | 3.1203 |
203
+ | 3.3019 | 10.48 | 1240000 | 3.1349 |
204
+ | 3.3037 | 10.55 | 1248000 | 3.1323 |
205
+ | 3.3037 | 10.62 | 1256000 | 3.1343 |
206
+ | 3.2868 | 10.68 | 1264000 | 3.1262 |
207
+ | 3.2868 | 10.75 | 1272000 | 3.1266 |
208
+ | 3.3033 | 10.82 | 1280000 | 3.1283 |
209
+ | 3.3033 | 10.89 | 1288000 | 3.1290 |
210
+ | 3.2984 | 10.95 | 1296000 | 3.1177 |
211
+ | 3.2984 | 11.02 | 1304000 | 3.1234 |
212
+ | 3.2982 | 11.09 | 1312000 | 3.1310 |
213
+ | 3.2982 | 11.16 | 1320000 | 3.1409 |
214
+ | 3.303 | 11.23 | 1328000 | 3.1330 |
215
+ | 3.303 | 11.29 | 1336000 | 3.1281 |
216
+ | 3.2976 | 11.36 | 1344000 | 3.1286 |
217
+ | 3.2976 | 11.43 | 1352000 | 3.1283 |
218
+ | 3.2923 | 11.5 | 1360000 | 3.1146 |
219
+ | 3.2923 | 11.56 | 1368000 | 3.1387 |
220
+ | 3.2988 | 11.63 | 1376000 | 3.1278 |
221
+ | 3.2988 | 11.7 | 1384000 | 3.1225 |
222
+ | 3.299 | 11.77 | 1392000 | 3.1341 |
223
+ | 3.299 | 11.83 | 1400000 | 3.1211 |
224
+ | 3.2993 | 11.9 | 1408000 | 3.1026 |
225
+ | 3.2993 | 11.97 | 1416000 | 3.1223 |
226
+ | 3.2942 | 12.04 | 1424000 | 3.1200 |
227
+ | 3.2942 | 12.1 | 1432000 | 3.1246 |
228
+ | 3.3062 | 12.17 | 1440000 | 3.1325 |
229
+ | 3.3062 | 12.24 | 1448000 | 3.1388 |
230
+ | 3.297 | 12.31 | 1456000 | 3.1371 |
231
+ | 3.297 | 12.37 | 1464000 | 3.1272 |
232
+ | 3.3033 | 12.44 | 1472000 | 3.1231 |
233
+ | 3.3033 | 12.51 | 1480000 | 3.1316 |
234
+ | 3.291 | 12.58 | 1488000 | 3.1393 |
235
+ | 3.291 | 12.65 | 1496000 | 3.1269 |
236
+ | 3.3054 | 12.71 | 1504000 | 3.1363 |
237
+ | 3.3054 | 12.78 | 1512000 | 3.1249 |
238
+ | 3.2908 | 12.85 | 1520000 | 3.1310 |
239
+ | 3.2908 | 12.92 | 1528000 | 3.1213 |
240
+ | 3.2987 | 12.98 | 1536000 | 3.1223 |
241
+ | 3.2987 | 13.05 | 1544000 | 3.1134 |
242
+ | 3.2965 | 13.12 | 1552000 | 3.1168 |
243
+ | 3.2965 | 13.19 | 1560000 | 3.1230 |
244
+ | 3.2931 | 13.25 | 1568000 | 3.1132 |
245
+ | 3.2931 | 13.32 | 1576000 | 3.1196 |
246
+ | 3.301 | 13.39 | 1584000 | 3.1287 |
247
+ | 3.301 | 13.46 | 1592000 | 3.1145 |
248
+ | 3.3004 | 13.52 | 1600000 | 3.1291 |
249
+ | 3.3004 | 13.59 | 1608000 | 3.1145 |
250
+ | 3.2992 | 13.66 | 1616000 | 3.1292 |
251
+ | 3.2992 | 13.73 | 1624000 | 3.1248 |
252
+ | 3.2974 | 13.79 | 1632000 | 3.1315 |
253
+ | 3.2974 | 13.86 | 1640000 | 3.1112 |
254
+ | 3.2993 | 13.93 | 1648000 | 3.1217 |
255
+ | 3.2993 | 14.0 | 1656000 | 3.1362 |
256
+ | 3.2934 | 14.07 | 1664000 | 3.1199 |
257
+ | 3.2934 | 14.13 | 1672000 | 3.1276 |
258
+ | 3.2964 | 14.2 | 1680000 | 3.1164 |
259
+ | 3.2964 | 14.27 | 1688000 | 3.1172 |
260
+ | 3.305 | 14.34 | 1696000 | 3.1320 |
261
+ | 3.305 | 14.4 | 1704000 | 3.1269 |
262
+ | 3.3022 | 14.47 | 1712000 | 3.1107 |
263
+ | 3.3022 | 14.54 | 1720000 | 3.1097 |
264
+ | 3.2969 | 14.61 | 1728000 | 3.1176 |
265
+ | 3.2969 | 14.67 | 1736000 | 3.1282 |
266
+ | 3.2976 | 14.74 | 1744000 | 3.1195 |
267
+ | 3.2976 | 14.81 | 1752000 | 3.1154 |
268
+ | 3.3004 | 14.88 | 1760000 | 3.1147 |
269
+ | 3.3004 | 14.94 | 1768000 | 3.1094 |
270
+ | 3.2908 | 15.01 | 1776000 | 3.1313 |
271
+ | 3.2908 | 15.08 | 1784000 | 3.1280 |
272
+ | 3.2896 | 15.15 | 1792000 | 3.1304 |
273
+ | 3.2896 | 15.21 | 1800000 | 3.1329 |
274
+ | 3.3061 | 15.28 | 1808000 | 3.1198 |
275
+ | 3.3061 | 15.35 | 1816000 | 3.1258 |
276
+ | 3.3056 | 15.42 | 1824000 | 3.1253 |
277
+ | 3.3056 | 15.49 | 1832000 | 3.1200 |
278
+ | 3.2921 | 15.55 | 1840000 | 3.1384 |
279
+ | 3.2921 | 15.62 | 1848000 | 3.1225 |
280
+ | 3.2895 | 15.69 | 1856000 | 3.1284 |
281
+ | 3.2895 | 15.76 | 1864000 | 3.1201 |
282
+ | 3.293 | 15.82 | 1872000 | 3.1256 |
283
+ | 3.293 | 15.89 | 1880000 | 3.1166 |
284
+ | 3.2963 | 15.96 | 1888000 | 3.1218 |
285
+ | 3.2963 | 16.03 | 1896000 | 3.1193 |
286
+ | 3.2908 | 16.09 | 1904000 | 3.1204 |
287
+ | 3.2908 | 16.16 | 1912000 | 3.1325 |
288
+ | 3.3039 | 16.23 | 1920000 | 3.1091 |
289
+ | 3.3039 | 16.3 | 1928000 | 3.1250 |
290
+ | 3.3011 | 16.36 | 1936000 | 3.1217 |
291
+ | 3.3011 | 16.43 | 1944000 | 3.1208 |
292
+ | 3.3003 | 16.5 | 1952000 | 3.1109 |
293
+ | 3.3003 | 16.57 | 1960000 | 3.1252 |
294
+ | 3.3012 | 16.63 | 1968000 | 3.1123 |
295
+ | 3.3012 | 16.7 | 1976000 | 3.1213 |
296
+ | 3.2885 | 16.77 | 1984000 | 3.1219 |
297
+ | 3.2885 | 16.84 | 1992000 | 3.1254 |
298
+ | 3.2982 | 16.91 | 2000000 | 3.1260 |
299
+ | 3.2982 | 16.97 | 2008000 | 3.1167 |
300
+ | 3.2962 | 17.04 | 2016000 | 3.1082 |
301
+ | 3.2962 | 17.11 | 2024000 | 3.1204 |
302
+ | 3.2889 | 17.18 | 2032000 | 3.1236 |
303
+ | 3.2889 | 17.24 | 2040000 | 3.1325 |
304
+ | 3.2892 | 17.31 | 2048000 | 3.1200 |
305
+ | 3.2892 | 17.38 | 2056000 | 3.1231 |
306
+ | 3.3028 | 17.45 | 2064000 | 3.1202 |
307
+ | 3.3028 | 17.51 | 2072000 | 3.1189 |
308
+ | 3.2889 | 17.58 | 2080000 | 3.1337 |
309
+ | 3.2889 | 17.65 | 2088000 | 3.1156 |
310
+ | 3.2985 | 17.72 | 2096000 | 3.1258 |
311
+ | 3.2985 | 17.78 | 2104000 | 3.1358 |
312
+ | 3.2949 | 17.85 | 2112000 | 3.1271 |
313
+ | 3.2949 | 17.92 | 2120000 | 3.1250 |
314
+ | 3.2987 | 17.99 | 2128000 | 3.1244 |
315
+ | 3.2987 | 18.05 | 2136000 | 3.1221 |
316
+ | 3.2884 | 18.12 | 2144000 | 3.1198 |
317
+ | 3.2884 | 18.19 | 2152000 | 3.1170 |
318
+ | 3.2918 | 18.26 | 2160000 | 3.1159 |
319
+ | 3.2918 | 18.33 | 2168000 | 3.1153 |
320
+ | 3.2995 | 18.39 | 2176000 | 3.1203 |
321
+ | 3.2995 | 18.46 | 2184000 | 3.1107 |
322
+ | 3.3003 | 18.53 | 2192000 | 3.1212 |
323
+ | 3.3003 | 18.6 | 2200000 | 3.1330 |
324
+ | 3.2921 | 18.66 | 2208000 | 3.1160 |
325
+ | 3.2921 | 18.73 | 2216000 | 3.1192 |
326
+ | 3.293 | 18.8 | 2224000 | 3.1164 |
327
+ | 3.293 | 18.87 | 2232000 | 3.1225 |
328
+ | 3.2969 | 18.93 | 2240000 | 3.1243 |
329
+ | 3.2969 | 19.0 | 2248000 | 3.1152 |
330
+ | 3.2891 | 19.07 | 2256000 | 3.1323 |
331
+ | 3.2891 | 19.14 | 2264000 | 3.1077 |
332
+ | 3.2903 | 19.2 | 2272000 | 3.1348 |
333
+ | 3.2903 | 19.27 | 2280000 | 3.1202 |
334
+ | 3.2986 | 19.34 | 2288000 | 3.1220 |
335
+ | 3.2986 | 19.41 | 2296000 | 3.1236 |
336
+ | 3.293 | 19.47 | 2304000 | 3.1224 |
337
+ | 3.293 | 19.54 | 2312000 | 3.1247 |
338
+ | 3.299 | 19.61 | 2320000 | 3.1235 |
339
+ | 3.299 | 19.68 | 2328000 | 3.1201 |
340
+ | 3.2898 | 19.75 | 2336000 | 3.1163 |
341
+ | 3.2898 | 19.81 | 2344000 | 3.1289 |
342
+ | 3.2956 | 19.88 | 2352000 | 3.1198 |
343
+ | 3.2956 | 19.95 | 2360000 | 3.1251 |
344
+ | 3.2926 | 20.02 | 2368000 | 3.1087 |
345
+ | 3.2926 | 20.08 | 2376000 | 3.1097 |
346
+ | 3.2958 | 20.15 | 2384000 | 3.1262 |
347
+ | 3.2958 | 20.22 | 2392000 | 3.1308 |
348
+ | 3.2862 | 20.29 | 2400000 | 3.1129 |
349
+
350
+
351
+ ### Framework versions
352
+
353
+ - Transformers 4.35.0.dev0
354
+ - Pytorch 2.0.1+cu117
355
+ - Datasets 2.14.5
356
+ - Tokenizers 0.14.0
pytorch_model.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:1701ee074ac37946138dd838da51d43d11e7d9de79cd8490a52671a4a33a4d2a
3
  size 498859189
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2fad8364613dac6507f307d25d2349e8c25a322ff2698f6af6530aa117e2ce38
3
  size 498859189