DouglasPontes
commited on
Model save
Browse files- README.md +305 -304
- pytorch_model.bin +1 -1
README.md
CHANGED
@@ -4,18 +4,18 @@ base_model: cardiffnlp/twitter-roberta-base-2019-90m
|
|
4 |
tags:
|
5 |
- generated_from_trainer
|
6 |
model-index:
|
7 |
-
- name: 2020-
|
8 |
results: []
|
9 |
---
|
10 |
|
11 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
12 |
should probably proofread and complete it, then remove this comment. -->
|
13 |
|
14 |
-
# 2020-
|
15 |
|
16 |
This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base-2019-90m](https://huggingface.co/cardiffnlp/twitter-roberta-base-2019-90m) on an unknown dataset.
|
17 |
It achieves the following results on the evaluation set:
|
18 |
-
- Loss: 2.
|
19 |
|
20 |
## Model description
|
21 |
|
@@ -34,318 +34,319 @@ More information needed
|
|
34 |
### Training hyperparameters
|
35 |
|
36 |
The following hyperparameters were used during training:
|
37 |
-
- learning_rate:
|
38 |
- train_batch_size: 16
|
39 |
- eval_batch_size: 16
|
40 |
- seed: 42
|
41 |
- optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08
|
42 |
- lr_scheduler_type: linear
|
|
|
43 |
- training_steps: 2400000
|
44 |
|
45 |
### Training results
|
46 |
|
47 |
| Training Loss | Epoch | Step | Validation Loss |
|
48 |
|:-------------:|:-----:|:-------:|:---------------:|
|
49 |
-
| No log | 0.03 | 8000 | 2.
|
50 |
-
|
|
51 |
-
|
|
52 |
-
| 2.
|
53 |
-
| 2.
|
54 |
-
| 2.
|
55 |
-
| 2.
|
56 |
-
| 2.
|
57 |
-
| 2.
|
58 |
-
| 2.
|
59 |
-
| 2.
|
60 |
-
| 2.
|
61 |
-
| 2.
|
62 |
-
| 2.
|
63 |
-
| 2.
|
64 |
-
| 2.
|
65 |
-
| 2.
|
66 |
-
| 2.
|
67 |
-
| 2.
|
68 |
-
| 2.
|
69 |
-
| 2.
|
70 |
-
| 2.
|
71 |
-
| 2.
|
72 |
-
| 2.
|
73 |
-
| 2.
|
74 |
-
| 2.
|
75 |
-
| 2.
|
76 |
-
| 2.
|
77 |
-
| 2.
|
78 |
-
| 2.
|
79 |
-
| 2.
|
80 |
-
| 2.
|
81 |
-
| 2.
|
82 |
-
| 2.
|
83 |
-
| 2.
|
84 |
-
| 2.
|
85 |
-
| 2.
|
86 |
-
| 2.
|
87 |
-
| 2.
|
88 |
-
| 2.
|
89 |
-
| 2.
|
90 |
-
| 2.
|
91 |
-
| 2.
|
92 |
-
| 2.
|
93 |
-
| 2.
|
94 |
-
| 2.
|
95 |
-
| 2.
|
96 |
-
| 2.
|
97 |
-
| 2.
|
98 |
-
| 2.
|
99 |
-
| 2.
|
100 |
-
| 2.
|
101 |
-
| 2.
|
102 |
-
| 2.
|
103 |
-
| 2.
|
104 |
-
| 2.
|
105 |
-
| 2.
|
106 |
-
| 2.
|
107 |
-
| 2.
|
108 |
-
| 2.
|
109 |
-
| 2.
|
110 |
-
| 2.
|
111 |
-
| 2.
|
112 |
-
| 2.
|
113 |
-
| 2.
|
114 |
-
| 2.
|
115 |
-
| 2.
|
116 |
-
| 2.
|
117 |
-
| 2.
|
118 |
-
| 2.
|
119 |
-
| 2.
|
120 |
-
| 2.
|
121 |
-
| 2.
|
122 |
-
| 2.
|
123 |
-
| 2.
|
124 |
-
| 2.
|
125 |
-
| 2.
|
126 |
-
| 2.
|
127 |
-
| 2.
|
128 |
-
| 2.
|
129 |
-
| 2.
|
130 |
-
| 2.
|
131 |
-
| 2.
|
132 |
-
| 2.
|
133 |
-
| 2.
|
134 |
-
| 2.
|
135 |
-
| 2.
|
136 |
-
| 2.
|
137 |
-
| 2.
|
138 |
-
| 2.
|
139 |
-
| 2.
|
140 |
-
| 2.
|
141 |
-
| 2.
|
142 |
-
| 2.
|
143 |
-
| 2.
|
144 |
-
| 2.
|
145 |
-
| 2.
|
146 |
-
| 2.
|
147 |
-
| 2.
|
148 |
-
| 2.
|
149 |
-
| 2.
|
150 |
-
| 2.
|
151 |
-
| 2.
|
152 |
-
| 2.
|
153 |
-
| 2.
|
154 |
-
| 2.
|
155 |
-
| 2.
|
156 |
-
| 2.
|
157 |
-
| 2.
|
158 |
-
| 2.
|
159 |
-
| 2.
|
160 |
-
| 2.
|
161 |
-
| 2.
|
162 |
-
|
|
163 |
-
|
|
164 |
-
| 2.
|
165 |
-
| 2.
|
166 |
-
| 2.
|
167 |
-
| 2.
|
168 |
-
|
|
169 |
-
|
|
170 |
-
| 2.
|
171 |
-
| 2.
|
172 |
-
|
|
173 |
-
|
|
174 |
-
|
|
175 |
-
|
|
176 |
-
|
|
177 |
-
|
|
178 |
-
|
|
179 |
-
|
|
180 |
-
|
|
181 |
-
|
|
182 |
-
|
|
183 |
-
|
|
184 |
-
|
|
185 |
-
|
|
186 |
-
|
|
187 |
-
|
|
188 |
-
|
|
189 |
-
|
|
190 |
-
|
|
191 |
-
|
|
192 |
-
|
|
193 |
-
|
|
194 |
-
|
|
195 |
-
|
|
196 |
-
|
|
197 |
-
|
|
198 |
-
|
|
199 |
-
|
|
200 |
-
|
|
201 |
-
|
|
202 |
-
|
|
203 |
-
|
|
204 |
-
|
|
205 |
-
|
|
206 |
-
|
|
207 |
-
|
|
208 |
-
|
|
209 |
-
|
|
210 |
-
|
|
211 |
-
|
|
212 |
-
|
|
213 |
-
|
|
214 |
-
|
|
215 |
-
|
|
216 |
-
|
|
217 |
-
|
|
218 |
-
|
|
219 |
-
|
|
220 |
-
|
|
221 |
-
|
|
222 |
-
|
|
223 |
-
|
|
224 |
-
|
|
225 |
-
|
|
226 |
-
| 2.
|
227 |
-
| 2.
|
228 |
-
| 2.
|
229 |
-
| 2.
|
230 |
-
|
|
231 |
-
|
|
232 |
-
|
|
233 |
-
|
|
234 |
-
|
|
235 |
-
|
|
236 |
-
|
|
237 |
-
|
|
238 |
-
|
|
239 |
-
|
|
240 |
-
|
|
241 |
-
|
|
242 |
-
|
|
243 |
-
|
|
244 |
-
|
|
245 |
-
|
|
246 |
-
|
|
247 |
-
|
|
248 |
-
|
|
249 |
-
|
|
250 |
-
|
|
251 |
-
|
|
252 |
-
|
|
253 |
-
|
|
254 |
-
|
|
255 |
-
|
|
256 |
-
|
|
257 |
-
|
|
258 |
-
|
|
259 |
-
|
|
260 |
-
|
|
261 |
-
|
|
262 |
-
|
|
263 |
-
|
|
264 |
-
|
|
265 |
-
|
|
266 |
-
|
|
267 |
-
|
|
268 |
-
|
|
269 |
-
|
|
270 |
-
|
|
271 |
-
|
|
272 |
-
|
|
273 |
-
|
|
274 |
-
|
|
275 |
-
|
|
276 |
-
|
|
277 |
-
|
|
278 |
-
|
|
279 |
-
|
|
280 |
-
|
|
281 |
-
|
|
282 |
-
|
|
283 |
-
|
|
284 |
-
|
|
285 |
-
|
|
286 |
-
|
|
287 |
-
|
|
288 |
-
|
|
289 |
-
|
|
290 |
-
|
|
291 |
-
|
|
292 |
-
|
|
293 |
-
|
|
294 |
-
|
|
295 |
-
|
|
296 |
-
|
|
297 |
-
|
|
298 |
-
|
|
299 |
-
|
|
300 |
-
|
|
301 |
-
|
|
302 |
-
|
|
303 |
-
|
|
304 |
-
|
|
305 |
-
|
|
306 |
-
|
|
307 |
-
|
|
308 |
-
|
|
309 |
-
|
|
310 |
-
|
|
311 |
-
|
|
312 |
-
|
|
313 |
-
|
|
314 |
-
|
|
315 |
-
|
|
316 |
-
|
|
317 |
-
|
|
318 |
-
|
|
319 |
-
|
|
320 |
-
|
|
321 |
-
|
|
322 |
-
|
|
323 |
-
|
|
324 |
-
|
|
325 |
-
|
|
326 |
-
|
|
327 |
-
|
|
328 |
-
|
|
329 |
-
|
|
330 |
-
|
|
331 |
-
|
|
332 |
-
|
|
333 |
-
|
|
334 |
-
|
|
335 |
-
|
|
336 |
-
|
|
337 |
-
|
|
338 |
-
|
|
339 |
-
|
|
340 |
-
|
|
341 |
-
|
|
342 |
-
|
|
343 |
-
|
|
344 |
-
|
|
345 |
-
|
|
346 |
-
|
|
347 |
-
|
|
348 |
-
|
|
349 |
|
350 |
|
351 |
### Framework versions
|
|
|
4 |
tags:
|
5 |
- generated_from_trainer
|
6 |
model-index:
|
7 |
+
- name: 2020-Q2-50p-filtered
|
8 |
results: []
|
9 |
---
|
10 |
|
11 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
12 |
should probably proofread and complete it, then remove this comment. -->
|
13 |
|
14 |
+
# 2020-Q2-50p-filtered
|
15 |
|
16 |
This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base-2019-90m](https://huggingface.co/cardiffnlp/twitter-roberta-base-2019-90m) on an unknown dataset.
|
17 |
It achieves the following results on the evaluation set:
|
18 |
+
- Loss: 2.8566
|
19 |
|
20 |
## Model description
|
21 |
|
|
|
34 |
### Training hyperparameters
|
35 |
|
36 |
The following hyperparameters were used during training:
|
37 |
+
- learning_rate: 1e-05
|
38 |
- train_batch_size: 16
|
39 |
- eval_batch_size: 16
|
40 |
- seed: 42
|
41 |
- optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08
|
42 |
- lr_scheduler_type: linear
|
43 |
+
- lr_scheduler_warmup_steps: 1400
|
44 |
- training_steps: 2400000
|
45 |
|
46 |
### Training results
|
47 |
|
48 |
| Training Loss | Epoch | Step | Validation Loss |
|
49 |
|:-------------:|:-----:|:-------:|:---------------:|
|
50 |
+
| No log | 0.03 | 8000 | 2.6645 |
|
51 |
+
| 2.8656 | 0.07 | 16000 | 2.6465 |
|
52 |
+
| 2.8656 | 0.1 | 24000 | 2.6186 |
|
53 |
+
| 2.7946 | 0.13 | 32000 | 2.6235 |
|
54 |
+
| 2.7946 | 0.17 | 40000 | 2.6151 |
|
55 |
+
| 2.7911 | 0.2 | 48000 | 2.6128 |
|
56 |
+
| 2.7911 | 0.24 | 56000 | 2.6010 |
|
57 |
+
| 2.7898 | 0.27 | 64000 | 2.6144 |
|
58 |
+
| 2.7898 | 0.3 | 72000 | 2.5976 |
|
59 |
+
| 2.7791 | 0.34 | 80000 | 2.6006 |
|
60 |
+
| 2.7791 | 0.37 | 88000 | 2.5889 |
|
61 |
+
| 2.7776 | 0.4 | 96000 | 2.5888 |
|
62 |
+
| 2.7776 | 0.44 | 104000 | 2.5842 |
|
63 |
+
| 2.7702 | 0.47 | 112000 | 2.5760 |
|
64 |
+
| 2.7702 | 0.51 | 120000 | 2.5720 |
|
65 |
+
| 2.7661 | 0.54 | 128000 | 2.5710 |
|
66 |
+
| 2.7661 | 0.57 | 136000 | 2.5673 |
|
67 |
+
| 2.7609 | 0.61 | 144000 | 2.5693 |
|
68 |
+
| 2.7609 | 0.64 | 152000 | 2.5623 |
|
69 |
+
| 2.7557 | 0.67 | 160000 | 2.5559 |
|
70 |
+
| 2.7557 | 0.71 | 168000 | 2.5650 |
|
71 |
+
| 2.7584 | 0.74 | 176000 | 2.5584 |
|
72 |
+
| 2.7584 | 0.77 | 184000 | 2.5591 |
|
73 |
+
| 2.7619 | 0.81 | 192000 | 2.5597 |
|
74 |
+
| 2.7619 | 0.84 | 200000 | 2.5650 |
|
75 |
+
| 2.7678 | 0.88 | 208000 | 2.5728 |
|
76 |
+
| 2.7678 | 0.91 | 216000 | 2.5712 |
|
77 |
+
| 2.7735 | 0.94 | 224000 | 2.5729 |
|
78 |
+
| 2.7735 | 0.98 | 232000 | 2.5755 |
|
79 |
+
| 2.777 | 1.01 | 240000 | 2.5715 |
|
80 |
+
| 2.777 | 1.04 | 248000 | 2.5747 |
|
81 |
+
| 2.7692 | 1.08 | 256000 | 2.5782 |
|
82 |
+
| 2.7692 | 1.11 | 264000 | 2.5841 |
|
83 |
+
| 2.7826 | 1.15 | 272000 | 2.5731 |
|
84 |
+
| 2.7826 | 1.18 | 280000 | 2.5836 |
|
85 |
+
| 2.7845 | 1.21 | 288000 | 2.5841 |
|
86 |
+
| 2.7845 | 1.25 | 296000 | 2.5811 |
|
87 |
+
| 2.7909 | 1.28 | 304000 | 2.5928 |
|
88 |
+
| 2.7909 | 1.31 | 312000 | 2.5977 |
|
89 |
+
| 2.7993 | 1.35 | 320000 | 2.6025 |
|
90 |
+
| 2.7993 | 1.38 | 328000 | 2.6072 |
|
91 |
+
| 2.8107 | 1.41 | 336000 | 2.6110 |
|
92 |
+
| 2.8107 | 1.45 | 344000 | 2.6020 |
|
93 |
+
| 2.8102 | 1.48 | 352000 | 2.6065 |
|
94 |
+
| 2.8102 | 1.52 | 360000 | 2.6207 |
|
95 |
+
| 2.8247 | 1.55 | 368000 | 2.6192 |
|
96 |
+
| 2.8247 | 1.58 | 376000 | 2.6224 |
|
97 |
+
| 2.8271 | 1.62 | 384000 | 2.6205 |
|
98 |
+
| 2.8271 | 1.65 | 392000 | 2.6292 |
|
99 |
+
| 2.8415 | 1.68 | 400000 | 2.6348 |
|
100 |
+
| 2.8415 | 1.72 | 408000 | 2.6518 |
|
101 |
+
| 2.842 | 1.75 | 416000 | 2.6465 |
|
102 |
+
| 2.842 | 1.79 | 424000 | 2.6434 |
|
103 |
+
| 2.8431 | 1.82 | 432000 | 2.6414 |
|
104 |
+
| 2.8431 | 1.85 | 440000 | 2.6532 |
|
105 |
+
| 2.8599 | 1.89 | 448000 | 2.6645 |
|
106 |
+
| 2.8599 | 1.92 | 456000 | 2.6651 |
|
107 |
+
| 2.8567 | 1.95 | 464000 | 2.6694 |
|
108 |
+
| 2.8567 | 1.99 | 472000 | 2.6610 |
|
109 |
+
| 2.8682 | 2.02 | 480000 | 2.6877 |
|
110 |
+
| 2.8682 | 2.05 | 488000 | 2.6724 |
|
111 |
+
| 2.8693 | 2.09 | 496000 | 2.6839 |
|
112 |
+
| 2.8693 | 2.12 | 504000 | 2.6923 |
|
113 |
+
| 2.8881 | 2.16 | 512000 | 2.6964 |
|
114 |
+
| 2.8881 | 2.19 | 520000 | 2.6982 |
|
115 |
+
| 2.8874 | 2.22 | 528000 | 2.6961 |
|
116 |
+
| 2.8874 | 2.26 | 536000 | 2.6884 |
|
117 |
+
| 2.8899 | 2.29 | 544000 | 2.7055 |
|
118 |
+
| 2.8899 | 2.32 | 552000 | 2.6988 |
|
119 |
+
| 2.8966 | 2.36 | 560000 | 2.7103 |
|
120 |
+
| 2.8966 | 2.39 | 568000 | 2.7100 |
|
121 |
+
| 2.9 | 2.43 | 576000 | 2.7169 |
|
122 |
+
| 2.9 | 2.46 | 584000 | 2.7180 |
|
123 |
+
| 2.9237 | 2.49 | 592000 | 2.7270 |
|
124 |
+
| 2.9237 | 2.53 | 600000 | 2.7265 |
|
125 |
+
| 2.9236 | 2.56 | 608000 | 2.7323 |
|
126 |
+
| 2.9236 | 2.59 | 616000 | 2.7350 |
|
127 |
+
| 2.9276 | 2.63 | 624000 | 2.7333 |
|
128 |
+
| 2.9276 | 2.66 | 632000 | 2.7345 |
|
129 |
+
| 2.9252 | 2.69 | 640000 | 2.7497 |
|
130 |
+
| 2.9252 | 2.73 | 648000 | 2.7428 |
|
131 |
+
| 2.9364 | 2.76 | 656000 | 2.7392 |
|
132 |
+
| 2.9364 | 2.8 | 664000 | 2.7505 |
|
133 |
+
| 2.9366 | 2.83 | 672000 | 2.7393 |
|
134 |
+
| 2.9366 | 2.86 | 680000 | 2.7372 |
|
135 |
+
| 2.9437 | 2.9 | 688000 | 2.7451 |
|
136 |
+
| 2.9437 | 2.93 | 696000 | 2.7488 |
|
137 |
+
| 2.9483 | 2.96 | 704000 | 2.7586 |
|
138 |
+
| 2.9483 | 3.0 | 712000 | 2.7613 |
|
139 |
+
| 2.9588 | 3.03 | 720000 | 2.7619 |
|
140 |
+
| 2.9588 | 3.07 | 728000 | 2.7680 |
|
141 |
+
| 2.9422 | 3.1 | 736000 | 2.7546 |
|
142 |
+
| 2.9422 | 3.13 | 744000 | 2.7629 |
|
143 |
+
| 2.965 | 3.17 | 752000 | 2.7595 |
|
144 |
+
| 2.965 | 3.2 | 760000 | 2.7763 |
|
145 |
+
| 2.959 | 3.23 | 768000 | 2.7739 |
|
146 |
+
| 2.959 | 3.27 | 776000 | 2.7839 |
|
147 |
+
| 2.9604 | 3.3 | 784000 | 2.7681 |
|
148 |
+
| 2.9604 | 3.33 | 792000 | 2.7816 |
|
149 |
+
| 2.9638 | 3.37 | 800000 | 2.7812 |
|
150 |
+
| 2.9638 | 3.4 | 808000 | 2.7846 |
|
151 |
+
| 2.9704 | 3.44 | 816000 | 2.7766 |
|
152 |
+
| 2.9704 | 3.47 | 824000 | 2.7869 |
|
153 |
+
| 2.9684 | 3.5 | 832000 | 2.7741 |
|
154 |
+
| 2.9684 | 3.54 | 840000 | 2.7735 |
|
155 |
+
| 2.9723 | 3.57 | 848000 | 2.7701 |
|
156 |
+
| 2.9723 | 3.6 | 856000 | 2.7780 |
|
157 |
+
| 2.9734 | 3.64 | 864000 | 2.7833 |
|
158 |
+
| 2.9734 | 3.67 | 872000 | 2.7910 |
|
159 |
+
| 2.9806 | 3.71 | 880000 | 2.7941 |
|
160 |
+
| 2.9806 | 3.74 | 888000 | 2.7997 |
|
161 |
+
| 2.9808 | 3.77 | 896000 | 2.8027 |
|
162 |
+
| 2.9808 | 3.81 | 904000 | 2.7972 |
|
163 |
+
| 3.0008 | 3.84 | 912000 | 2.8026 |
|
164 |
+
| 3.0008 | 3.87 | 920000 | 2.7975 |
|
165 |
+
| 2.9934 | 3.91 | 928000 | 2.7971 |
|
166 |
+
| 2.9934 | 3.94 | 936000 | 2.8030 |
|
167 |
+
| 2.9927 | 3.97 | 944000 | 2.8082 |
|
168 |
+
| 2.9927 | 4.01 | 952000 | 2.8208 |
|
169 |
+
| 3.0013 | 4.04 | 960000 | 2.8129 |
|
170 |
+
| 3.0013 | 4.08 | 968000 | 2.8236 |
|
171 |
+
| 2.9996 | 4.11 | 976000 | 2.8226 |
|
172 |
+
| 2.9996 | 4.14 | 984000 | 2.8273 |
|
173 |
+
| 3.0125 | 4.18 | 992000 | 2.8161 |
|
174 |
+
| 3.0125 | 4.21 | 1000000 | 2.8249 |
|
175 |
+
| 3.0086 | 4.24 | 1008000 | 2.8320 |
|
176 |
+
| 3.0086 | 4.28 | 1016000 | 2.8313 |
|
177 |
+
| 3.0077 | 4.31 | 1024000 | 2.8321 |
|
178 |
+
| 3.0077 | 4.35 | 1032000 | 2.8332 |
|
179 |
+
| 3.0186 | 4.38 | 1040000 | 2.8288 |
|
180 |
+
| 3.0186 | 4.41 | 1048000 | 2.8392 |
|
181 |
+
| 3.0311 | 4.45 | 1056000 | 2.8243 |
|
182 |
+
| 3.0311 | 4.48 | 1064000 | 2.8524 |
|
183 |
+
| 3.0199 | 4.51 | 1072000 | 2.8347 |
|
184 |
+
| 3.0199 | 4.55 | 1080000 | 2.8438 |
|
185 |
+
| 3.0198 | 4.58 | 1088000 | 2.8415 |
|
186 |
+
| 3.0198 | 4.61 | 1096000 | 2.8460 |
|
187 |
+
| 3.0279 | 4.65 | 1104000 | 2.8551 |
|
188 |
+
| 3.0279 | 4.68 | 1112000 | 2.8528 |
|
189 |
+
| 3.0319 | 4.72 | 1120000 | 2.8601 |
|
190 |
+
| 3.0319 | 4.75 | 1128000 | 2.8544 |
|
191 |
+
| 3.0371 | 4.78 | 1136000 | 2.8553 |
|
192 |
+
| 3.0371 | 4.82 | 1144000 | 2.8597 |
|
193 |
+
| 3.038 | 4.85 | 1152000 | 2.8653 |
|
194 |
+
| 3.038 | 4.88 | 1160000 | 2.8560 |
|
195 |
+
| 3.0318 | 4.92 | 1168000 | 2.8602 |
|
196 |
+
| 3.0318 | 4.95 | 1176000 | 2.8484 |
|
197 |
+
| 3.0449 | 4.99 | 1184000 | 2.8612 |
|
198 |
+
| 3.0449 | 5.02 | 1192000 | 2.8598 |
|
199 |
+
| 3.0384 | 5.05 | 1200000 | 2.8581 |
|
200 |
+
| 3.0384 | 5.09 | 1208000 | 2.8481 |
|
201 |
+
| 3.0243 | 5.12 | 1216000 | 2.8458 |
|
202 |
+
| 3.0243 | 5.15 | 1224000 | 2.8494 |
|
203 |
+
| 3.0345 | 5.19 | 1232000 | 2.8544 |
|
204 |
+
| 3.0345 | 5.22 | 1240000 | 2.8488 |
|
205 |
+
| 3.0251 | 5.25 | 1248000 | 2.8453 |
|
206 |
+
| 3.0251 | 5.29 | 1256000 | 2.8464 |
|
207 |
+
| 3.0234 | 5.32 | 1264000 | 2.8486 |
|
208 |
+
| 3.0234 | 5.36 | 1272000 | 2.8436 |
|
209 |
+
| 3.0205 | 5.39 | 1280000 | 2.8476 |
|
210 |
+
| 3.0205 | 5.42 | 1288000 | 2.8327 |
|
211 |
+
| 3.0228 | 5.46 | 1296000 | 2.8452 |
|
212 |
+
| 3.0228 | 5.49 | 1304000 | 2.8372 |
|
213 |
+
| 3.0063 | 5.52 | 1312000 | 2.8306 |
|
214 |
+
| 3.0063 | 5.56 | 1320000 | 2.8411 |
|
215 |
+
| 3.0068 | 5.59 | 1328000 | 2.8273 |
|
216 |
+
| 3.0068 | 5.63 | 1336000 | 2.8343 |
|
217 |
+
| 3.0109 | 5.66 | 1344000 | 2.8328 |
|
218 |
+
| 3.0109 | 5.69 | 1352000 | 2.8431 |
|
219 |
+
| 3.0068 | 5.73 | 1360000 | 2.8332 |
|
220 |
+
| 3.0068 | 5.76 | 1368000 | 2.8275 |
|
221 |
+
| 3.002 | 5.79 | 1376000 | 2.8314 |
|
222 |
+
| 3.002 | 5.83 | 1384000 | 2.8324 |
|
223 |
+
| 3.0037 | 5.86 | 1392000 | 2.8394 |
|
224 |
+
| 3.0037 | 5.89 | 1400000 | 2.8338 |
|
225 |
+
| 3.0086 | 5.93 | 1408000 | 2.8448 |
|
226 |
+
| 3.0086 | 5.96 | 1416000 | 2.8326 |
|
227 |
+
| 2.9977 | 6.0 | 1424000 | 2.8311 |
|
228 |
+
| 2.9977 | 6.03 | 1432000 | 2.8410 |
|
229 |
+
| 2.9984 | 6.06 | 1440000 | 2.8359 |
|
230 |
+
| 2.9984 | 6.1 | 1448000 | 2.8393 |
|
231 |
+
| 3.0095 | 6.13 | 1456000 | 2.8388 |
|
232 |
+
| 3.0095 | 6.16 | 1464000 | 2.8448 |
|
233 |
+
| 3.0051 | 6.2 | 1472000 | 2.8472 |
|
234 |
+
| 3.0051 | 6.23 | 1480000 | 2.8421 |
|
235 |
+
| 3.0142 | 6.27 | 1488000 | 2.8424 |
|
236 |
+
| 3.0142 | 6.3 | 1496000 | 2.8477 |
|
237 |
+
| 3.0149 | 6.33 | 1504000 | 2.8428 |
|
238 |
+
| 3.0149 | 6.37 | 1512000 | 2.8529 |
|
239 |
+
| 3.0147 | 6.4 | 1520000 | 2.8541 |
|
240 |
+
| 3.0147 | 6.43 | 1528000 | 2.8519 |
|
241 |
+
| 3.0205 | 6.47 | 1536000 | 2.8527 |
|
242 |
+
| 3.0205 | 6.5 | 1544000 | 2.8471 |
|
243 |
+
| 3.029 | 6.53 | 1552000 | 2.8583 |
|
244 |
+
| 3.029 | 6.57 | 1560000 | 2.8497 |
|
245 |
+
| 3.024 | 6.6 | 1568000 | 2.8653 |
|
246 |
+
| 3.024 | 6.64 | 1576000 | 2.8553 |
|
247 |
+
| 3.0371 | 6.67 | 1584000 | 2.8653 |
|
248 |
+
| 3.0371 | 6.7 | 1592000 | 2.8604 |
|
249 |
+
| 3.0319 | 6.74 | 1600000 | 2.8624 |
|
250 |
+
| 3.0319 | 6.77 | 1608000 | 2.8657 |
|
251 |
+
| 3.0369 | 6.8 | 1616000 | 2.8616 |
|
252 |
+
| 3.0369 | 6.84 | 1624000 | 2.8667 |
|
253 |
+
| 3.0357 | 6.87 | 1632000 | 2.8660 |
|
254 |
+
| 3.0357 | 6.91 | 1640000 | 2.8682 |
|
255 |
+
| 3.0342 | 6.94 | 1648000 | 2.8676 |
|
256 |
+
| 3.0342 | 6.97 | 1656000 | 2.8815 |
|
257 |
+
| 3.0375 | 7.01 | 1664000 | 2.8667 |
|
258 |
+
| 3.0375 | 7.04 | 1672000 | 2.8735 |
|
259 |
+
| 3.0419 | 7.07 | 1680000 | 2.8788 |
|
260 |
+
| 3.0419 | 7.11 | 1688000 | 2.8767 |
|
261 |
+
| 3.0403 | 7.14 | 1696000 | 2.8812 |
|
262 |
+
| 3.0403 | 7.17 | 1704000 | 2.8795 |
|
263 |
+
| 3.0482 | 7.21 | 1712000 | 2.8805 |
|
264 |
+
| 3.0482 | 7.24 | 1720000 | 2.8794 |
|
265 |
+
| 3.0533 | 7.28 | 1728000 | 2.8788 |
|
266 |
+
| 3.0533 | 7.31 | 1736000 | 2.8844 |
|
267 |
+
| 3.0453 | 7.34 | 1744000 | 2.8709 |
|
268 |
+
| 3.0453 | 7.38 | 1752000 | 2.8835 |
|
269 |
+
| 3.0562 | 7.41 | 1760000 | 2.8891 |
|
270 |
+
| 3.0562 | 7.44 | 1768000 | 2.8903 |
|
271 |
+
| 3.0617 | 7.48 | 1776000 | 2.8849 |
|
272 |
+
| 3.0617 | 7.51 | 1784000 | 2.8766 |
|
273 |
+
| 3.0539 | 7.55 | 1792000 | 2.8872 |
|
274 |
+
| 3.0539 | 7.58 | 1800000 | 2.8981 |
|
275 |
+
| 3.0561 | 7.61 | 1808000 | 2.8862 |
|
276 |
+
| 3.0561 | 7.65 | 1816000 | 2.8940 |
|
277 |
+
| 3.0529 | 7.68 | 1824000 | 2.8874 |
|
278 |
+
| 3.0529 | 7.71 | 1832000 | 2.8839 |
|
279 |
+
| 3.0484 | 7.75 | 1840000 | 2.8838 |
|
280 |
+
| 3.0484 | 7.78 | 1848000 | 2.8856 |
|
281 |
+
| 3.0562 | 7.81 | 1856000 | 2.8984 |
|
282 |
+
| 3.0562 | 7.85 | 1864000 | 2.8844 |
|
283 |
+
| 3.0578 | 7.88 | 1872000 | 2.8874 |
|
284 |
+
| 3.0578 | 7.92 | 1880000 | 2.8887 |
|
285 |
+
| 3.0553 | 7.95 | 1888000 | 2.8798 |
|
286 |
+
| 3.0553 | 7.98 | 1896000 | 2.8789 |
|
287 |
+
| 3.0623 | 8.02 | 1904000 | 2.8968 |
|
288 |
+
| 3.0623 | 8.05 | 1912000 | 2.8834 |
|
289 |
+
| 3.0652 | 8.08 | 1920000 | 2.8902 |
|
290 |
+
| 3.0652 | 8.12 | 1928000 | 2.8822 |
|
291 |
+
| 3.0487 | 8.15 | 1936000 | 2.8844 |
|
292 |
+
| 3.0487 | 8.19 | 1944000 | 2.8909 |
|
293 |
+
| 3.0546 | 8.22 | 1952000 | 2.8915 |
|
294 |
+
| 3.0546 | 8.25 | 1960000 | 2.8870 |
|
295 |
+
| 3.0524 | 8.29 | 1968000 | 2.8828 |
|
296 |
+
| 3.0524 | 8.32 | 1976000 | 2.8781 |
|
297 |
+
| 3.0491 | 8.35 | 1984000 | 2.8948 |
|
298 |
+
| 3.0491 | 8.39 | 1992000 | 2.8904 |
|
299 |
+
| 3.0534 | 8.42 | 2000000 | 2.8839 |
|
300 |
+
| 3.0534 | 8.45 | 2008000 | 2.8918 |
|
301 |
+
| 3.0547 | 8.49 | 2016000 | 2.8739 |
|
302 |
+
| 3.0547 | 8.52 | 2024000 | 2.8684 |
|
303 |
+
| 3.0544 | 8.56 | 2032000 | 2.8740 |
|
304 |
+
| 3.0544 | 8.59 | 2040000 | 2.8784 |
|
305 |
+
| 3.0448 | 8.62 | 2048000 | 2.8758 |
|
306 |
+
| 3.0448 | 8.66 | 2056000 | 2.8801 |
|
307 |
+
| 3.0499 | 8.69 | 2064000 | 2.8793 |
|
308 |
+
| 3.0499 | 8.72 | 2072000 | 2.8707 |
|
309 |
+
| 3.0368 | 8.76 | 2080000 | 2.8722 |
|
310 |
+
| 3.0368 | 8.79 | 2088000 | 2.8752 |
|
311 |
+
| 3.0548 | 8.83 | 2096000 | 2.8880 |
|
312 |
+
| 3.0548 | 8.86 | 2104000 | 2.8781 |
|
313 |
+
| 3.0457 | 8.89 | 2112000 | 2.8825 |
|
314 |
+
| 3.0457 | 8.93 | 2120000 | 2.8827 |
|
315 |
+
| 3.0377 | 8.96 | 2128000 | 2.8810 |
|
316 |
+
| 3.0377 | 8.99 | 2136000 | 2.8727 |
|
317 |
+
| 3.0341 | 9.03 | 2144000 | 2.8750 |
|
318 |
+
| 3.0341 | 9.06 | 2152000 | 2.8638 |
|
319 |
+
| 3.0275 | 9.09 | 2160000 | 2.8690 |
|
320 |
+
| 3.0275 | 9.13 | 2168000 | 2.8660 |
|
321 |
+
| 3.0413 | 9.16 | 2176000 | 2.8578 |
|
322 |
+
| 3.0413 | 9.2 | 2184000 | 2.8692 |
|
323 |
+
| 3.0272 | 9.23 | 2192000 | 2.8702 |
|
324 |
+
| 3.0272 | 9.26 | 2200000 | 2.8707 |
|
325 |
+
| 3.034 | 9.3 | 2208000 | 2.8666 |
|
326 |
+
| 3.034 | 9.33 | 2216000 | 2.8734 |
|
327 |
+
| 3.0346 | 9.36 | 2224000 | 2.8685 |
|
328 |
+
| 3.0346 | 9.4 | 2232000 | 2.8675 |
|
329 |
+
| 3.0234 | 9.43 | 2240000 | 2.8662 |
|
330 |
+
| 3.0234 | 9.47 | 2248000 | 2.8670 |
|
331 |
+
| 3.0256 | 9.5 | 2256000 | 2.8764 |
|
332 |
+
| 3.0256 | 9.53 | 2264000 | 2.8664 |
|
333 |
+
| 3.0232 | 9.57 | 2272000 | 2.8625 |
|
334 |
+
| 3.0232 | 9.6 | 2280000 | 2.8647 |
|
335 |
+
| 3.0309 | 9.63 | 2288000 | 2.8561 |
|
336 |
+
| 3.0309 | 9.67 | 2296000 | 2.8657 |
|
337 |
+
| 3.0254 | 9.7 | 2304000 | 2.8667 |
|
338 |
+
| 3.0254 | 9.73 | 2312000 | 2.8618 |
|
339 |
+
| 3.0198 | 9.77 | 2320000 | 2.8650 |
|
340 |
+
| 3.0198 | 9.8 | 2328000 | 2.8630 |
|
341 |
+
| 3.0109 | 9.84 | 2336000 | 2.8533 |
|
342 |
+
| 3.0109 | 9.87 | 2344000 | 2.8656 |
|
343 |
+
| 3.0316 | 9.9 | 2352000 | 2.8607 |
|
344 |
+
| 3.0316 | 9.94 | 2360000 | 2.8572 |
|
345 |
+
| 3.0225 | 9.97 | 2368000 | 2.8617 |
|
346 |
+
| 3.0225 | 10.0 | 2376000 | 2.8604 |
|
347 |
+
| 3.0132 | 10.04 | 2384000 | 2.8577 |
|
348 |
+
| 3.0132 | 10.07 | 2392000 | 2.8535 |
|
349 |
+
| 3.0202 | 10.11 | 2400000 | 2.8566 |
|
350 |
|
351 |
|
352 |
### Framework versions
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 498859189
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cac39220d7bc7f4de8ceecc068c6892221f707297da8650ac0bd093ef12de89a
|
3 |
size 498859189
|