DmitrMakeev
commited on
Commit
•
add457a
1
Parent(s):
208a7f5
Upload 8 files
Browse files- models/layers/__init__.py +19 -0
- models/layers/activation_norm.py +420 -0
- models/layers/conv.py +1073 -0
- models/layers/misc.py +47 -0
- models/layers/non_local.py +79 -0
- models/layers/nonlinearity.py +37 -0
- models/layers/residual.py +1235 -0
- models/layers/weight_norm.py +92 -0
models/layers/__init__.py
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (C) 2020 NVIDIA Corporation. All rights reserved.
|
2 |
+
#
|
3 |
+
# This work is made available under the Nvidia Source Code License-NC.
|
4 |
+
# To view a copy of this license, check out LICENSE.md
|
5 |
+
from .conv import LinearBlock, Conv1dBlock, Conv2dBlock, Conv3dBlock, \
|
6 |
+
HyperConv2dBlock, MultiOutConv2dBlock, \
|
7 |
+
PartialConv2dBlock, PartialConv3dBlock
|
8 |
+
from .residual import ResLinearBlock, Res1dBlock, Res2dBlock, Res3dBlock, \
|
9 |
+
HyperRes2dBlock, MultiOutRes2dBlock, UpRes2dBlock, DownRes2dBlock, \
|
10 |
+
PartialRes2dBlock, PartialRes3dBlock
|
11 |
+
# from .non_local import NonLocal2dBlock
|
12 |
+
|
13 |
+
__all__ = ['Conv1dBlock', 'Conv2dBlock', 'Conv3dBlock', 'LinearBlock',
|
14 |
+
'HyperConv2dBlock', 'MultiOutConv2dBlock',
|
15 |
+
'PartialConv2dBlock', 'PartialConv3dBlock',
|
16 |
+
'Res1dBlock', 'Res2dBlock', 'Res3dBlock',
|
17 |
+
'UpRes2dBlock', 'DownRes2dBlock',
|
18 |
+
'ResLinearBlock', 'HyperRes2dBlock', 'MultiOutRes2dBlock',
|
19 |
+
'PartialRes2dBlock', 'PartialRes3dBlock',]
|
models/layers/activation_norm.py
ADDED
@@ -0,0 +1,420 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from types import SimpleNamespace
|
2 |
+
|
3 |
+
import torch
|
4 |
+
|
5 |
+
|
6 |
+
try:
|
7 |
+
# from torch.nn import BatchNorm2d as SyncBatchNorm
|
8 |
+
from torch.nn import SyncBatchNorm
|
9 |
+
except ImportError:
|
10 |
+
from torch.nn import BatchNorm2d as SyncBatchNorm
|
11 |
+
from torch import nn
|
12 |
+
from torch.nn import functional as F
|
13 |
+
from .conv import LinearBlock, Conv2dBlock, HyperConv2d, PartialConv2dBlock
|
14 |
+
from .misc import PartialSequential
|
15 |
+
import sync_batchnorm
|
16 |
+
|
17 |
+
|
18 |
+
class AdaptiveNorm(nn.Module):
|
19 |
+
r"""Adaptive normalization layer. The layer first normalizes the input, then
|
20 |
+
performs an affine transformation using parameters computed from the
|
21 |
+
conditional inputs.
|
22 |
+
Args:
|
23 |
+
num_features (int): Number of channels in the input tensor.
|
24 |
+
cond_dims (int): Number of channels in the conditional inputs.
|
25 |
+
weight_norm_type (str): Type of weight normalization.
|
26 |
+
``'none'``, ``'spectral'``, ``'weight'``, or ``'weight_demod'``.
|
27 |
+
projection (bool): If ``True``, project the conditional input to gamma
|
28 |
+
and beta using a fully connected layer, otherwise directly use
|
29 |
+
the conditional input as gamma and beta.
|
30 |
+
separate_projection (bool): If ``True``, we will use two different
|
31 |
+
layers for gamma and beta. Otherwise, we will use one layer. It
|
32 |
+
matters only if you apply any weight norms to this layer.
|
33 |
+
input_dim (int): Number of dimensions of the input tensor.
|
34 |
+
activation_norm_type (str):
|
35 |
+
Type of activation normalization.
|
36 |
+
``'none'``, ``'instance'``, ``'batch'``, ``'sync_batch'``,
|
37 |
+
``'layer'``, ``'layer_2d'``, ``'group'``, ``'adaptive'``,
|
38 |
+
``'spatially_adaptive'`` or ``'hyper_spatially_adaptive'``.
|
39 |
+
activation_norm_params (obj, optional, default=None):
|
40 |
+
Parameters of activation normalization.
|
41 |
+
If not ``None``, ``activation_norm_params.__dict__`` will be used as
|
42 |
+
keyword arguments when initializing activation normalization.
|
43 |
+
"""
|
44 |
+
|
45 |
+
def __init__(self, num_features, cond_dims, weight_norm_type='',
|
46 |
+
projection=True,
|
47 |
+
separate_projection=False,
|
48 |
+
input_dim=2,
|
49 |
+
activation_norm_type='instance',
|
50 |
+
activation_norm_params=None):
|
51 |
+
super().__init__()
|
52 |
+
self.projection = projection
|
53 |
+
self.separate_projection = separate_projection
|
54 |
+
if activation_norm_params is None:
|
55 |
+
activation_norm_params = SimpleNamespace(affine=False)
|
56 |
+
self.norm = get_activation_norm_layer(num_features,
|
57 |
+
activation_norm_type,
|
58 |
+
input_dim,
|
59 |
+
**vars(activation_norm_params))
|
60 |
+
if self.projection:
|
61 |
+
if self.separate_projection:
|
62 |
+
self.fc_gamma = \
|
63 |
+
LinearBlock(cond_dims, num_features,
|
64 |
+
weight_norm_type=weight_norm_type)
|
65 |
+
self.fc_beta = \
|
66 |
+
LinearBlock(cond_dims, num_features,
|
67 |
+
weight_norm_type=weight_norm_type)
|
68 |
+
else:
|
69 |
+
self.fc = LinearBlock(cond_dims, num_features * 2,
|
70 |
+
weight_norm_type=weight_norm_type)
|
71 |
+
|
72 |
+
self.conditional = True
|
73 |
+
|
74 |
+
def forward(self, x, y, **kwargs):
|
75 |
+
r"""Adaptive Normalization forward.
|
76 |
+
Args:
|
77 |
+
x (N x C1 x * tensor): Input tensor.
|
78 |
+
y (N x C2 tensor): Conditional information.
|
79 |
+
Returns:
|
80 |
+
out (N x C1 x * tensor): Output tensor.
|
81 |
+
"""
|
82 |
+
if self.projection:
|
83 |
+
if self.separate_projection:
|
84 |
+
gamma = self.fc_gamma(y)
|
85 |
+
beta = self.fc_beta(y)
|
86 |
+
for _ in range(x.dim() - gamma.dim()):
|
87 |
+
gamma = gamma.unsqueeze(-1)
|
88 |
+
beta = beta.unsqueeze(-1)
|
89 |
+
else:
|
90 |
+
y = self.fc(y)
|
91 |
+
for _ in range(x.dim() - y.dim()):
|
92 |
+
y = y.unsqueeze(-1)
|
93 |
+
gamma, beta = y.chunk(2, 1)
|
94 |
+
else:
|
95 |
+
for _ in range(x.dim() - y.dim()):
|
96 |
+
y = y.unsqueeze(-1)
|
97 |
+
gamma, beta = y.chunk(2, 1)
|
98 |
+
x = self.norm(x) if self.norm is not None else x
|
99 |
+
out = x * (1 + gamma) + beta
|
100 |
+
return out
|
101 |
+
|
102 |
+
|
103 |
+
class SpatiallyAdaptiveNorm(nn.Module):
|
104 |
+
r"""Spatially Adaptive Normalization (SPADE) initialization.
|
105 |
+
Args:
|
106 |
+
num_features (int) : Number of channels in the input tensor.
|
107 |
+
cond_dims (int or list of int) : List of numbers of channels
|
108 |
+
in the input.
|
109 |
+
num_filters (int): Number of filters in SPADE.
|
110 |
+
kernel_size (int): Kernel size of the convolutional filters in
|
111 |
+
the SPADE layer.
|
112 |
+
weight_norm_type (str): Type of weight normalization.
|
113 |
+
``'none'``, ``'spectral'``, or ``'weight'``.
|
114 |
+
separate_projection (bool): If ``True``, we will use two different
|
115 |
+
layers for gamma and beta. Otherwise, we will use one layer. It
|
116 |
+
matters only if you apply any weight norms to this layer.
|
117 |
+
activation_norm_type (str):
|
118 |
+
Type of activation normalization.
|
119 |
+
``'none'``, ``'instance'``, ``'batch'``, ``'sync_batch'``,
|
120 |
+
``'layer'``, ``'layer_2d'``, ``'group'``.
|
121 |
+
activation_norm_params (obj, optional, default=None):
|
122 |
+
Parameters of activation normalization.
|
123 |
+
If not ``None``, ``activation_norm_params.__dict__`` will be used as
|
124 |
+
keyword arguments when initializing activation normalization.
|
125 |
+
"""
|
126 |
+
|
127 |
+
def __init__(self,
|
128 |
+
num_features,
|
129 |
+
cond_dims,
|
130 |
+
num_filters=128,
|
131 |
+
kernel_size=3,
|
132 |
+
weight_norm_type='',
|
133 |
+
separate_projection=False,
|
134 |
+
activation_norm_type='sync_batch',
|
135 |
+
activation_norm_params=None,
|
136 |
+
partial=False):
|
137 |
+
super().__init__()
|
138 |
+
if activation_norm_params is None:
|
139 |
+
activation_norm_params = SimpleNamespace(affine=False)
|
140 |
+
padding = kernel_size // 2
|
141 |
+
self.separate_projection = separate_projection
|
142 |
+
self.mlps = nn.ModuleList()
|
143 |
+
self.gammas = nn.ModuleList()
|
144 |
+
self.betas = nn.ModuleList()
|
145 |
+
|
146 |
+
# Make cond_dims a list.
|
147 |
+
if type(cond_dims) != list:
|
148 |
+
cond_dims = [cond_dims]
|
149 |
+
|
150 |
+
# Make num_filters a list.
|
151 |
+
if not isinstance(num_filters, list):
|
152 |
+
num_filters = [num_filters] * len(cond_dims)
|
153 |
+
else:
|
154 |
+
assert len(num_filters) >= len(cond_dims)
|
155 |
+
|
156 |
+
# Make partial a list.
|
157 |
+
if not isinstance(partial, list):
|
158 |
+
partial = [partial] * len(cond_dims)
|
159 |
+
else:
|
160 |
+
assert len(partial) >= len(cond_dims)
|
161 |
+
|
162 |
+
for i, cond_dim in enumerate(cond_dims):
|
163 |
+
mlp = []
|
164 |
+
conv_block = PartialConv2dBlock if partial[i] else Conv2dBlock
|
165 |
+
sequential = PartialSequential if partial[i] else nn.Sequential
|
166 |
+
|
167 |
+
if num_filters[i] > 0:
|
168 |
+
mlp += [conv_block(cond_dim,
|
169 |
+
num_filters[i],
|
170 |
+
kernel_size,
|
171 |
+
padding=padding,
|
172 |
+
weight_norm_type=weight_norm_type,
|
173 |
+
nonlinearity='relu')]
|
174 |
+
mlp_ch = cond_dim if num_filters[i] == 0 else num_filters[i]
|
175 |
+
|
176 |
+
if self.separate_projection:
|
177 |
+
if partial[i]:
|
178 |
+
raise NotImplementedError(
|
179 |
+
'Separate projection not yet implemented for ' +
|
180 |
+
'partial conv')
|
181 |
+
self.mlps.append(nn.Sequential(*mlp))
|
182 |
+
self.gammas.append(
|
183 |
+
conv_block(mlp_ch, num_features,
|
184 |
+
kernel_size,
|
185 |
+
padding=padding,
|
186 |
+
weight_norm_type=weight_norm_type))
|
187 |
+
self.betas.append(
|
188 |
+
conv_block(mlp_ch, num_features,
|
189 |
+
kernel_size,
|
190 |
+
padding=padding,
|
191 |
+
weight_norm_type=weight_norm_type))
|
192 |
+
else:
|
193 |
+
mlp += [conv_block(mlp_ch, num_features * 2, kernel_size,
|
194 |
+
padding=padding,
|
195 |
+
weight_norm_type=weight_norm_type)]
|
196 |
+
self.mlps.append(sequential(*mlp))
|
197 |
+
|
198 |
+
self.norm = get_activation_norm_layer(num_features,
|
199 |
+
activation_norm_type,
|
200 |
+
2,
|
201 |
+
**vars(activation_norm_params))
|
202 |
+
self.conditional = True
|
203 |
+
|
204 |
+
def forward(self, x, *cond_inputs, **kwargs):
|
205 |
+
r"""Spatially Adaptive Normalization (SPADE) forward.
|
206 |
+
Args:
|
207 |
+
x (N x C1 x H x W tensor) : Input tensor.
|
208 |
+
cond_inputs (list of tensors) : Conditional maps for SPADE.
|
209 |
+
Returns:
|
210 |
+
output (4D tensor) : Output tensor.
|
211 |
+
"""
|
212 |
+
output = self.norm(x) if self.norm is not None else x
|
213 |
+
for i in range(len(cond_inputs)):
|
214 |
+
if cond_inputs[i] is None:
|
215 |
+
continue
|
216 |
+
label_map = F.interpolate(cond_inputs[i], size=x.size()[2:],
|
217 |
+
mode='nearest')
|
218 |
+
if self.separate_projection:
|
219 |
+
hidden = self.mlps[i](label_map)
|
220 |
+
gamma = self.gammas[i](hidden)
|
221 |
+
beta = self.betas[i](hidden)
|
222 |
+
else:
|
223 |
+
affine_params = self.mlps[i](label_map)
|
224 |
+
gamma, beta = affine_params.chunk(2, dim=1)
|
225 |
+
output = output * (1 + gamma) + beta
|
226 |
+
return output
|
227 |
+
|
228 |
+
|
229 |
+
class HyperSpatiallyAdaptiveNorm(nn.Module):
|
230 |
+
r"""Spatially Adaptive Normalization (SPADE) initialization.
|
231 |
+
Args:
|
232 |
+
num_features (int) : Number of channels in the input tensor.
|
233 |
+
cond_dims (int or list of int) : List of numbers of channels
|
234 |
+
in the conditional input.
|
235 |
+
num_filters (int): Number of filters in SPADE.
|
236 |
+
kernel_size (int): Kernel size of the convolutional filters in
|
237 |
+
the SPADE layer.
|
238 |
+
weight_norm_type (str): Type of weight normalization.
|
239 |
+
``'none'``, ``'spectral'``, or ``'weight'``.
|
240 |
+
activation_norm_type (str):
|
241 |
+
Type of activation normalization.
|
242 |
+
``'none'``, ``'instance'``, ``'batch'``, ``'sync_batch'``,
|
243 |
+
``'layer'``, ``'layer_2d'``, ``'group'``.
|
244 |
+
is_hyper (bool): Whether to use hyper SPADE.
|
245 |
+
"""
|
246 |
+
|
247 |
+
def __init__(self, num_features, cond_dims,
|
248 |
+
num_filters=0, kernel_size=3,
|
249 |
+
weight_norm_type='',
|
250 |
+
activation_norm_type='sync_batch', is_hyper=True):
|
251 |
+
super().__init__()
|
252 |
+
padding = kernel_size // 2
|
253 |
+
self.mlps = nn.ModuleList()
|
254 |
+
if type(cond_dims) != list:
|
255 |
+
cond_dims = [cond_dims]
|
256 |
+
|
257 |
+
for i, cond_dim in enumerate(cond_dims):
|
258 |
+
mlp = []
|
259 |
+
if not is_hyper or (i != 0):
|
260 |
+
if num_filters > 0:
|
261 |
+
mlp += [Conv2dBlock(cond_dim, num_filters, kernel_size,
|
262 |
+
padding=padding,
|
263 |
+
weight_norm_type=weight_norm_type,
|
264 |
+
nonlinearity='relu')]
|
265 |
+
mlp_ch = cond_dim if num_filters == 0 else num_filters
|
266 |
+
mlp += [Conv2dBlock(mlp_ch, num_features * 2, kernel_size,
|
267 |
+
padding=padding,
|
268 |
+
weight_norm_type=weight_norm_type)]
|
269 |
+
mlp = nn.Sequential(*mlp)
|
270 |
+
else:
|
271 |
+
if num_filters > 0:
|
272 |
+
raise ValueError('Multi hyper layer not supported yet.')
|
273 |
+
mlp = HyperConv2d(padding=padding)
|
274 |
+
self.mlps.append(mlp)
|
275 |
+
|
276 |
+
self.norm = get_activation_norm_layer(num_features,
|
277 |
+
activation_norm_type,
|
278 |
+
2,
|
279 |
+
affine=False)
|
280 |
+
|
281 |
+
self.conditional = True
|
282 |
+
|
283 |
+
def forward(self, x, *cond_inputs,
|
284 |
+
norm_weights=(None, None), **kwargs):
|
285 |
+
r"""Spatially Adaptive Normalization (SPADE) forward.
|
286 |
+
Args:
|
287 |
+
x (4D tensor) : Input tensor.
|
288 |
+
cond_inputs (list of tensors) : Conditional maps for SPADE.
|
289 |
+
norm_weights (5D tensor or list of tensors): conv weights or
|
290 |
+
[weights, biases].
|
291 |
+
Returns:
|
292 |
+
output (4D tensor) : Output tensor.
|
293 |
+
"""
|
294 |
+
output = self.norm(x)
|
295 |
+
for i in range(len(cond_inputs)):
|
296 |
+
if cond_inputs[i] is None:
|
297 |
+
continue
|
298 |
+
if type(cond_inputs[i]) == list:
|
299 |
+
cond_input, mask = cond_inputs[i]
|
300 |
+
mask = F.interpolate(mask, size=x.size()[2:], mode='bilinear',
|
301 |
+
align_corners=False)
|
302 |
+
else:
|
303 |
+
cond_input = cond_inputs[i]
|
304 |
+
mask = None
|
305 |
+
label_map = F.interpolate(cond_input, size=x.size()[2:])
|
306 |
+
if norm_weights is None or norm_weights[0] is None or i != 0:
|
307 |
+
affine_params = self.mlps[i](label_map)
|
308 |
+
else:
|
309 |
+
affine_params = self.mlps[i](label_map,
|
310 |
+
conv_weights=norm_weights)
|
311 |
+
gamma, beta = affine_params.chunk(2, dim=1)
|
312 |
+
if mask is not None:
|
313 |
+
gamma = gamma * (1 - mask)
|
314 |
+
beta = beta * (1 - mask)
|
315 |
+
output = output * (1 + gamma) + beta
|
316 |
+
return output
|
317 |
+
|
318 |
+
|
319 |
+
class LayerNorm2d(nn.Module):
|
320 |
+
r"""Layer Normalization as introduced in
|
321 |
+
https://arxiv.org/abs/1607.06450.
|
322 |
+
This is the usual way to apply layer normalization in CNNs.
|
323 |
+
Note that unlike the pytorch implementation which applies per-element
|
324 |
+
scale and bias, here it applies per-channel scale and bias, similar to
|
325 |
+
batch/instance normalization.
|
326 |
+
Args:
|
327 |
+
num_features (int): Number of channels in the input tensor.
|
328 |
+
eps (float, optional, default=1e-5): a value added to the
|
329 |
+
denominator for numerical stability.
|
330 |
+
affine (bool, optional, default=False): If ``True``, performs
|
331 |
+
affine transformation after normalization.
|
332 |
+
"""
|
333 |
+
|
334 |
+
def __init__(self, num_features, eps=1e-5, affine=True):
|
335 |
+
super(LayerNorm2d, self).__init__()
|
336 |
+
self.num_features = num_features
|
337 |
+
self.affine = affine
|
338 |
+
self.eps = eps
|
339 |
+
|
340 |
+
if self.affine:
|
341 |
+
self.gamma = nn.Parameter(torch.Tensor(num_features).uniform_())
|
342 |
+
self.beta = nn.Parameter(torch.zeros(num_features))
|
343 |
+
|
344 |
+
def forward(self, x):
|
345 |
+
r"""
|
346 |
+
Args:
|
347 |
+
x (tensor): Input tensor.
|
348 |
+
"""
|
349 |
+
shape = [-1] + [1] * (x.dim() - 1)
|
350 |
+
if x.size(0) == 1:
|
351 |
+
mean = x.view(-1).mean().view(*shape)
|
352 |
+
std = x.view(-1).std().view(*shape)
|
353 |
+
else:
|
354 |
+
mean = x.view(x.size(0), -1).mean(1).view(*shape)
|
355 |
+
std = x.view(x.size(0), -1).std(1).view(*shape)
|
356 |
+
|
357 |
+
x = (x - mean) / (std + self.eps)
|
358 |
+
|
359 |
+
if self.affine:
|
360 |
+
shape = [1, -1] + [1] * (x.dim() - 2)
|
361 |
+
x = x * self.gamma.view(*shape) + self.beta.view(*shape)
|
362 |
+
return x
|
363 |
+
|
364 |
+
|
365 |
+
def get_activation_norm_layer(num_features, norm_type,
|
366 |
+
input_dim, **norm_params):
|
367 |
+
r"""Return an activation normalization layer.
|
368 |
+
Args:
|
369 |
+
num_features (int): Number of feature channels.
|
370 |
+
norm_type (str):
|
371 |
+
Type of activation normalization.
|
372 |
+
``'none'``, ``'instance'``, ``'batch'``, ``'sync_batch'``,
|
373 |
+
``'layer'``, ``'layer_2d'``, ``'group'``, ``'adaptive'``,
|
374 |
+
``'spatially_adaptive'`` or ``'hyper_spatially_adaptive'``.
|
375 |
+
input_dim (int): Number of input dimensions.
|
376 |
+
norm_params: Arbitrary keyword arguments that will be used to
|
377 |
+
initialize the activation normalization.
|
378 |
+
"""
|
379 |
+
input_dim = max(input_dim, 1) # Norm1d works with both 0d and 1d inputs
|
380 |
+
|
381 |
+
if norm_type == 'none' or norm_type == '':
|
382 |
+
norm_layer = None
|
383 |
+
elif norm_type == 'batch':
|
384 |
+
# norm = getattr(nn, 'BatchNorm%dd' % input_dim)
|
385 |
+
norm = getattr(sync_batchnorm, 'SynchronizedBatchNorm%dd' % input_dim)
|
386 |
+
norm_layer = norm(num_features, **norm_params)
|
387 |
+
elif norm_type == 'instance':
|
388 |
+
affine = norm_params.pop('affine', True) # Use affine=True by default
|
389 |
+
norm = getattr(nn, 'InstanceNorm%dd' % input_dim)
|
390 |
+
norm_layer = norm(num_features, affine=affine, **norm_params)
|
391 |
+
elif norm_type == 'sync_batch':
|
392 |
+
# There is a bug of using amp O1 with synchronize batch norm.
|
393 |
+
# The lines below fix it.
|
394 |
+
affine = norm_params.pop('affine', True)
|
395 |
+
# Always call SyncBN with affine=True
|
396 |
+
norm_layer = SyncBatchNorm(num_features, affine=True, **norm_params)
|
397 |
+
norm_layer.weight.requires_grad = affine
|
398 |
+
norm_layer.bias.requires_grad = affine
|
399 |
+
elif norm_type == 'layer':
|
400 |
+
norm_layer = nn.LayerNorm(num_features, **norm_params)
|
401 |
+
elif norm_type == 'layer_2d':
|
402 |
+
norm_layer = LayerNorm2d(num_features, **norm_params)
|
403 |
+
elif norm_type == 'group':
|
404 |
+
norm_layer = nn.GroupNorm(num_channels=num_features, **norm_params)
|
405 |
+
elif norm_type == 'adaptive':
|
406 |
+
norm_layer = AdaptiveNorm(num_features, **norm_params)
|
407 |
+
elif norm_type == 'spatially_adaptive':
|
408 |
+
if input_dim != 2:
|
409 |
+
raise ValueError('Spatially adaptive normalization layers '
|
410 |
+
'only supports 2D input')
|
411 |
+
norm_layer = SpatiallyAdaptiveNorm(num_features, **norm_params)
|
412 |
+
elif norm_type == 'hyper_spatially_adaptive':
|
413 |
+
if input_dim != 2:
|
414 |
+
raise ValueError('Spatially adaptive normalization layers '
|
415 |
+
'only supports 2D input')
|
416 |
+
norm_layer = HyperSpatiallyAdaptiveNorm(num_features, **norm_params)
|
417 |
+
else:
|
418 |
+
raise ValueError('Activation norm layer %s '
|
419 |
+
'is not recognized' % norm_type)
|
420 |
+
return norm_layer
|
models/layers/conv.py
ADDED
@@ -0,0 +1,1073 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (C) 2020 NVIDIA Corporation. All rights reserved.
|
2 |
+
#
|
3 |
+
# This work is made available under the Nvidia Source Code License-NC.
|
4 |
+
# To view a copy of this license, check out LICENSE.md
|
5 |
+
from types import SimpleNamespace
|
6 |
+
|
7 |
+
import torch
|
8 |
+
from torch import nn
|
9 |
+
from torch.nn import functional as F
|
10 |
+
|
11 |
+
from .misc import ApplyNoise
|
12 |
+
|
13 |
+
|
14 |
+
class _BaseConvBlock(nn.Module):
|
15 |
+
r"""An abstract wrapper class that wraps a torch convolution or linear layer
|
16 |
+
with normalization and nonlinearity.
|
17 |
+
"""
|
18 |
+
|
19 |
+
def __init__(self, in_channels, out_channels, kernel_size, stride,
|
20 |
+
padding, dilation, groups, bias, padding_mode,
|
21 |
+
weight_norm_type, weight_norm_params,
|
22 |
+
activation_norm_type, activation_norm_params,
|
23 |
+
nonlinearity, inplace_nonlinearity,
|
24 |
+
apply_noise, order, input_dim):
|
25 |
+
super().__init__()
|
26 |
+
from .nonlinearity import get_nonlinearity_layer
|
27 |
+
from .weight_norm import get_weight_norm_layer
|
28 |
+
from .activation_norm import get_activation_norm_layer
|
29 |
+
self.weight_norm_type = weight_norm_type
|
30 |
+
|
31 |
+
# Convolutional layer.
|
32 |
+
if weight_norm_params is None:
|
33 |
+
weight_norm_params = SimpleNamespace()
|
34 |
+
weight_norm = get_weight_norm_layer(
|
35 |
+
weight_norm_type, **vars(weight_norm_params))
|
36 |
+
conv_layer = weight_norm(self._get_conv_layer(
|
37 |
+
in_channels, out_channels, kernel_size, stride, padding, dilation,
|
38 |
+
groups, bias, padding_mode, input_dim))
|
39 |
+
|
40 |
+
# Noise injection layer.
|
41 |
+
noise_layer = ApplyNoise() if apply_noise else None
|
42 |
+
|
43 |
+
# Normalization layer.
|
44 |
+
conv_before_norm = order.find('C') < order.find('N')
|
45 |
+
norm_channels = out_channels if conv_before_norm else in_channels
|
46 |
+
if activation_norm_params is None:
|
47 |
+
activation_norm_params = SimpleNamespace()
|
48 |
+
activation_norm_layer = get_activation_norm_layer(
|
49 |
+
norm_channels,
|
50 |
+
activation_norm_type,
|
51 |
+
input_dim,
|
52 |
+
**vars(activation_norm_params))
|
53 |
+
|
54 |
+
# Nonlinearity layer.
|
55 |
+
nonlinearity_layer = get_nonlinearity_layer(
|
56 |
+
nonlinearity, inplace=inplace_nonlinearity)
|
57 |
+
|
58 |
+
# Mapping from operation names to layers.
|
59 |
+
mappings = {'C': {'conv': conv_layer},
|
60 |
+
'N': {'norm': activation_norm_layer},
|
61 |
+
'A': {'nonlinearity': nonlinearity_layer}}
|
62 |
+
|
63 |
+
# All layers in order.
|
64 |
+
self.layers = nn.ModuleDict()
|
65 |
+
for op in order:
|
66 |
+
if list(mappings[op].values())[0] is not None:
|
67 |
+
self.layers.update(mappings[op])
|
68 |
+
if op == 'C' and noise_layer is not None:
|
69 |
+
# Inject noise after convolution.
|
70 |
+
self.layers.update({'noise': noise_layer})
|
71 |
+
|
72 |
+
# Whether this block expects conditional inputs.
|
73 |
+
self.conditional = \
|
74 |
+
getattr(conv_layer, 'conditional', False) or \
|
75 |
+
getattr(activation_norm_layer, 'conditional', False)
|
76 |
+
|
77 |
+
def forward(self, x, *cond_inputs, **kw_cond_inputs):
|
78 |
+
r"""
|
79 |
+
|
80 |
+
Args:
|
81 |
+
x (tensor): Input tensor.
|
82 |
+
cond_inputs (list of tensors) : Conditional input tensors.
|
83 |
+
kw_cond_inputs (dict) : Keyword conditional inputs.
|
84 |
+
"""
|
85 |
+
for layer in self.layers.values():
|
86 |
+
if getattr(layer, 'conditional', False):
|
87 |
+
# Layers that require conditional inputs.
|
88 |
+
x = layer(x, *cond_inputs, **kw_cond_inputs)
|
89 |
+
else:
|
90 |
+
x = layer(x)
|
91 |
+
return x
|
92 |
+
|
93 |
+
def _get_conv_layer(self, in_channels, out_channels, kernel_size, stride,
|
94 |
+
padding, dilation, groups, bias, padding_mode,
|
95 |
+
input_dim):
|
96 |
+
# Returns the convolutional layer.
|
97 |
+
if input_dim == 0:
|
98 |
+
layer = nn.Linear(in_channels, out_channels, bias)
|
99 |
+
else:
|
100 |
+
layer_type = getattr(nn, 'Conv%dd' % input_dim)
|
101 |
+
|
102 |
+
layer = layer_type(
|
103 |
+
in_channels, out_channels, kernel_size, stride, padding,
|
104 |
+
dilation, groups, bias)
|
105 |
+
return layer
|
106 |
+
|
107 |
+
def __repr__(self):
|
108 |
+
main_str = self._get_name() + '('
|
109 |
+
child_lines = []
|
110 |
+
for name, layer in self.layers.items():
|
111 |
+
mod_str = repr(layer)
|
112 |
+
if name == 'conv' and self.weight_norm_type != 'none' and \
|
113 |
+
self.weight_norm_type != '':
|
114 |
+
mod_str = mod_str[:-1] + \
|
115 |
+
', weight_norm={}'.format(self.weight_norm_type) + ')'
|
116 |
+
mod_str = self._addindent(mod_str, 2)
|
117 |
+
child_lines.append(mod_str)
|
118 |
+
if len(child_lines) == 1:
|
119 |
+
main_str += child_lines[0]
|
120 |
+
else:
|
121 |
+
main_str += '\n ' + '\n '.join(child_lines) + '\n'
|
122 |
+
|
123 |
+
main_str += ')'
|
124 |
+
return main_str
|
125 |
+
|
126 |
+
@staticmethod
|
127 |
+
def _addindent(s_, numSpaces):
|
128 |
+
s = s_.split('\n')
|
129 |
+
# don't do anything for single-line stuff
|
130 |
+
if len(s) == 1:
|
131 |
+
return s_
|
132 |
+
first = s.pop(0)
|
133 |
+
s = [(numSpaces * ' ') + line for line in s]
|
134 |
+
s = '\n'.join(s)
|
135 |
+
s = first + '\n' + s
|
136 |
+
return s
|
137 |
+
|
138 |
+
|
139 |
+
class LinearBlock(_BaseConvBlock):
|
140 |
+
r"""A Wrapper class that wraps ``torch.nn.Linear`` with normalization and
|
141 |
+
nonlinearity.
|
142 |
+
|
143 |
+
Args:
|
144 |
+
in_features (int): Number of channels in the input tensor.
|
145 |
+
out_features (int): Number of channels in the output tensor.
|
146 |
+
bias (bool, optional, default=True):
|
147 |
+
If ``True``, adds a learnable bias to the output.
|
148 |
+
weight_norm_type (str, optional, default='none'):
|
149 |
+
Type of weight normalization.
|
150 |
+
``'none'``, ``'spectral'``, ``'weight'``
|
151 |
+
or ``'weight_demod'``.
|
152 |
+
weight_norm_params (obj, optional, default=None):
|
153 |
+
Parameters of weight normalization.
|
154 |
+
If not ``None``, ``weight_norm_params.__dict__`` will be used as
|
155 |
+
keyword arguments when initializing weight normalization.
|
156 |
+
activation_norm_type (str, optional, default='none'):
|
157 |
+
Type of activation normalization.
|
158 |
+
``'none'``, ``'instance'``, ``'batch'``, ``'sync_batch'``,
|
159 |
+
``'layer'``, ``'layer_2d'``, ``'group'``, ``'adaptive'``,
|
160 |
+
``'spatially_adaptive'`` or ``'hyper_spatially_adaptive'``.
|
161 |
+
activation_norm_params (obj, optional, default=None):
|
162 |
+
Parameters of activation normalization.
|
163 |
+
If not ``None``, ``activation_norm_params.__dict__`` will be used as
|
164 |
+
keyword arguments when initializing activation normalization.
|
165 |
+
nonlinearity (str, optional, default='none'):
|
166 |
+
Type of nonlinear activation function.
|
167 |
+
``'none'``, ``'relu'``, ``'leakyrelu'``, ``'prelu'``,
|
168 |
+
``'tanh'`` , ``'sigmoid'`` or ``'softmax'``.
|
169 |
+
inplace_nonlinearity (bool, optional, default=False): If ``True``,
|
170 |
+
set ``inplace=True`` when initializing the nonlinearity layer.
|
171 |
+
apply_noise (bool, optional, default=False): If ``True``, add
|
172 |
+
Gaussian noise with learnable magnitude after the
|
173 |
+
fully-connected layer.
|
174 |
+
order (str, optional, default='CNA'): Order of operations.
|
175 |
+
``'C'``: fully-connected,
|
176 |
+
``'N'``: normalization,
|
177 |
+
``'A'``: nonlinear activation.
|
178 |
+
For example, a block initialized with ``order='CNA'`` will
|
179 |
+
do convolution first, then normalization, then nonlinearity.
|
180 |
+
"""
|
181 |
+
|
182 |
+
def __init__(self, in_features, out_features, bias=True,
|
183 |
+
weight_norm_type='none', weight_norm_params=None,
|
184 |
+
activation_norm_type='none', activation_norm_params=None,
|
185 |
+
nonlinearity='none', inplace_nonlinearity=False,
|
186 |
+
apply_noise=False, order='CNA'):
|
187 |
+
super().__init__(in_features, out_features, None, None,
|
188 |
+
None, None, None, bias,
|
189 |
+
None, weight_norm_type, weight_norm_params,
|
190 |
+
activation_norm_type, activation_norm_params,
|
191 |
+
nonlinearity, inplace_nonlinearity, apply_noise,
|
192 |
+
order, 0)
|
193 |
+
|
194 |
+
|
195 |
+
class Conv1dBlock(_BaseConvBlock):
|
196 |
+
r"""A Wrapper class that wraps ``torch.nn.Conv1d`` with normalization and
|
197 |
+
nonlinearity.
|
198 |
+
|
199 |
+
Args:
|
200 |
+
in_channels (int): Number of channels in the input tensor.
|
201 |
+
out_channels (int): Number of channels in the output tensor.
|
202 |
+
kernel_size (int or tuple): Size of the convolving kernel.
|
203 |
+
stride (int or tuple, optional, default=1):
|
204 |
+
Stride of the convolution.
|
205 |
+
padding (int or tuple, optional, default=0):
|
206 |
+
Zero-padding added to both sides of the input.
|
207 |
+
dilation (int or tuple, optional, default=1):
|
208 |
+
Spacing between kernel elements.
|
209 |
+
groups (int, optional, default=1): Number of blocked connections
|
210 |
+
from input channels to output channels.
|
211 |
+
bias (bool, optional, default=True):
|
212 |
+
If ``True``, adds a learnable bias to the output.
|
213 |
+
padding_mode (string, optional, default='zeros'): Type of padding:
|
214 |
+
``'zeros'``, ``'reflect'``, ``'replicate'`` or ``'circular'``.
|
215 |
+
weight_norm_type (str, optional, default='none'):
|
216 |
+
Type of weight normalization.
|
217 |
+
``'none'``, ``'spectral'``, ``'weight'``
|
218 |
+
or ``'weight_demod'``.
|
219 |
+
weight_norm_params (obj, optional, default=None):
|
220 |
+
Parameters of weight normalization.
|
221 |
+
If not ``None``, ``weight_norm_params.__dict__`` will be used as
|
222 |
+
keyword arguments when initializing weight normalization.
|
223 |
+
activation_norm_type (str, optional, default='none'):
|
224 |
+
Type of activation normalization.
|
225 |
+
``'none'``, ``'instance'``, ``'batch'``, ``'sync_batch'``,
|
226 |
+
``'layer'``, ``'layer_2d'``, ``'group'``, ``'adaptive'``,
|
227 |
+
``'spatially_adaptive'`` or ``'hyper_spatially_adaptive'``.
|
228 |
+
activation_norm_params (obj, optional, default=None):
|
229 |
+
Parameters of activation normalization.
|
230 |
+
If not ``None``, ``activation_norm_params.__dict__`` will be used as
|
231 |
+
keyword arguments when initializing activation normalization.
|
232 |
+
nonlinearity (str, optional, default='none'):
|
233 |
+
Type of nonlinear activation function.
|
234 |
+
``'none'``, ``'relu'``, ``'leakyrelu'``, ``'prelu'``,
|
235 |
+
``'tanh'`` , ``'sigmoid'`` or ``'softmax'``.
|
236 |
+
inplace_nonlinearity (bool, optional, default=False): If ``True``,
|
237 |
+
set ``inplace=True`` when initializing the nonlinearity layer.
|
238 |
+
apply_noise (bool, optional, default=False): If ``True``, adds
|
239 |
+
Gaussian noise with learnable magnitude to the convolution output.
|
240 |
+
order (str, optional, default='CNA'): Order of operations.
|
241 |
+
``'C'``: convolution,
|
242 |
+
``'N'``: normalization,
|
243 |
+
``'A'``: nonlinear activation.
|
244 |
+
For example, a block initialized with ``order='CNA'`` will
|
245 |
+
do convolution first, then normalization, then nonlinearity.
|
246 |
+
"""
|
247 |
+
|
248 |
+
def __init__(self, in_channels, out_channels, kernel_size, stride=1,
|
249 |
+
padding=0, dilation=1, groups=1, bias=True,
|
250 |
+
padding_mode='zeros',
|
251 |
+
weight_norm_type='none', weight_norm_params=None,
|
252 |
+
activation_norm_type='none', activation_norm_params=None,
|
253 |
+
nonlinearity='none', inplace_nonlinearity=False,
|
254 |
+
apply_noise=False, order='CNA'):
|
255 |
+
super().__init__(in_channels, out_channels, kernel_size, stride,
|
256 |
+
padding, dilation, groups, bias, padding_mode,
|
257 |
+
weight_norm_type, weight_norm_params,
|
258 |
+
activation_norm_type, activation_norm_params,
|
259 |
+
nonlinearity, inplace_nonlinearity, apply_noise,
|
260 |
+
order, 1)
|
261 |
+
|
262 |
+
|
263 |
+
class Conv2dBlock(_BaseConvBlock):
|
264 |
+
r"""A Wrapper class that wraps ``torch.nn.Conv2d`` with normalization and
|
265 |
+
nonlinearity.
|
266 |
+
|
267 |
+
Args:
|
268 |
+
in_channels (int): Number of channels in the input tensor.
|
269 |
+
out_channels (int): Number of channels in the output tensor.
|
270 |
+
kernel_size (int or tuple): Size of the convolving kernel.
|
271 |
+
stride (int or tuple, optional, default=1):
|
272 |
+
Stride of the convolution.
|
273 |
+
padding (int or tuple, optional, default=0):
|
274 |
+
Zero-padding added to both sides of the input.
|
275 |
+
dilation (int or tuple, optional, default=1):
|
276 |
+
Spacing between kernel elements.
|
277 |
+
groups (int, optional, default=1): Number of blocked connections
|
278 |
+
from input channels to output channels.
|
279 |
+
bias (bool, optional, default=True):
|
280 |
+
If ``True``, adds a learnable bias to the output.
|
281 |
+
padding_mode (string, optional, default='zeros'): Type of padding:
|
282 |
+
``'zeros'``, ``'reflect'``, ``'replicate'`` or ``'circular'``.
|
283 |
+
weight_norm_type (str, optional, default='none'):
|
284 |
+
Type of weight normalization.
|
285 |
+
``'none'``, ``'spectral'``, ``'weight'``
|
286 |
+
or ``'weight_demod'``.
|
287 |
+
weight_norm_params (obj, optional, default=None):
|
288 |
+
Parameters of weight normalization.
|
289 |
+
If not ``None``, ``weight_norm_params.__dict__`` will be used as
|
290 |
+
keyword arguments when initializing weight normalization.
|
291 |
+
activation_norm_type (str, optional, default='none'):
|
292 |
+
Type of activation normalization.
|
293 |
+
``'none'``, ``'instance'``, ``'batch'``, ``'sync_batch'``,
|
294 |
+
``'layer'``, ``'layer_2d'``, ``'group'``, ``'adaptive'``,
|
295 |
+
``'spatially_adaptive'`` or ``'hyper_spatially_adaptive'``.
|
296 |
+
activation_norm_params (obj, optional, default=None):
|
297 |
+
Parameters of activation normalization.
|
298 |
+
If not ``None``, ``activation_norm_params.__dict__`` will be used as
|
299 |
+
keyword arguments when initializing activation normalization.
|
300 |
+
nonlinearity (str, optional, default='none'):
|
301 |
+
Type of nonlinear activation function.
|
302 |
+
``'none'``, ``'relu'``, ``'leakyrelu'``, ``'prelu'``,
|
303 |
+
``'tanh'`` , ``'sigmoid'`` or ``'softmax'``.
|
304 |
+
inplace_nonlinearity (bool, optional, default=False): If ``True``,
|
305 |
+
set ``inplace=True`` when initializing the nonlinearity layer.
|
306 |
+
apply_noise (bool, optional, default=False): If ``True``, adds
|
307 |
+
Gaussian noise with learnable magnitude to the convolution output.
|
308 |
+
order (str, optional, default='CNA'): Order of operations.
|
309 |
+
``'C'``: convolution,
|
310 |
+
``'N'``: normalization,
|
311 |
+
``'A'``: nonlinear activation.
|
312 |
+
For example, a block initialized with ``order='CNA'`` will
|
313 |
+
do convolution first, then normalization, then nonlinearity.
|
314 |
+
"""
|
315 |
+
|
316 |
+
def __init__(self, in_channels, out_channels, kernel_size, stride=1,
|
317 |
+
padding=0, dilation=1, groups=1, bias=True,
|
318 |
+
padding_mode='zeros',
|
319 |
+
weight_norm_type='none', weight_norm_params=None,
|
320 |
+
activation_norm_type='none', activation_norm_params=None,
|
321 |
+
nonlinearity='none', inplace_nonlinearity=False,
|
322 |
+
apply_noise=False, order='CNA'):
|
323 |
+
super().__init__(in_channels, out_channels, kernel_size, stride,
|
324 |
+
padding, dilation, groups, bias, padding_mode,
|
325 |
+
weight_norm_type, weight_norm_params,
|
326 |
+
activation_norm_type, activation_norm_params,
|
327 |
+
nonlinearity, inplace_nonlinearity,
|
328 |
+
apply_noise, order, 2)
|
329 |
+
|
330 |
+
|
331 |
+
class Conv3dBlock(_BaseConvBlock):
|
332 |
+
r"""A Wrapper class that wraps ``torch.nn.Conv3d`` with normalization and
|
333 |
+
nonlinearity.
|
334 |
+
|
335 |
+
Args:
|
336 |
+
in_channels (int): Number of channels in the input tensor.
|
337 |
+
out_channels (int): Number of channels in the output tensor.
|
338 |
+
kernel_size (int or tuple): Size of the convolving kernel.
|
339 |
+
stride (int or tuple, optional, default=1):
|
340 |
+
Stride of the convolution.
|
341 |
+
padding (int or tuple, optional, default=0):
|
342 |
+
Zero-padding added to both sides of the input.
|
343 |
+
dilation (int or tuple, optional, default=1):
|
344 |
+
Spacing between kernel elements.
|
345 |
+
groups (int, optional, default=1): Number of blocked connections
|
346 |
+
from input channels to output channels.
|
347 |
+
bias (bool, optional, default=True):
|
348 |
+
If ``True``, adds a learnable bias to the output.
|
349 |
+
padding_mode (string, optional, default='zeros'): Type of padding:
|
350 |
+
``'zeros'``, ``'reflect'``, ``'replicate'`` or ``'circular'``.
|
351 |
+
weight_norm_type (str, optional, default='none'):
|
352 |
+
Type of weight normalization.
|
353 |
+
``'none'``, ``'spectral'``, ``'weight'``
|
354 |
+
or ``'weight_demod'``.
|
355 |
+
weight_norm_params (obj, optional, default=None):
|
356 |
+
Parameters of weight normalization.
|
357 |
+
If not ``None``, ``weight_norm_params.__dict__`` will be used as
|
358 |
+
keyword arguments when initializing weight normalization.
|
359 |
+
activation_norm_type (str, optional, default='none'):
|
360 |
+
Type of activation normalization.
|
361 |
+
``'none'``, ``'instance'``, ``'batch'``, ``'sync_batch'``,
|
362 |
+
``'layer'``, ``'layer_2d'``, ``'group'``, ``'adaptive'``,
|
363 |
+
``'spatially_adaptive'`` or ``'hyper_spatially_adaptive'``.
|
364 |
+
activation_norm_params (obj, optional, default=None):
|
365 |
+
Parameters of activation normalization.
|
366 |
+
If not ``None``, ``activation_norm_params.__dict__`` will be used as
|
367 |
+
keyword arguments when initializing activation normalization.
|
368 |
+
nonlinearity (str, optional, default='none'):
|
369 |
+
Type of nonlinear activation function.
|
370 |
+
``'none'``, ``'relu'``, ``'leakyrelu'``, ``'prelu'``,
|
371 |
+
``'tanh'`` , ``'sigmoid'`` or ``'softmax'``.
|
372 |
+
inplace_nonlinearity (bool, optional, default=False): If ``True``,
|
373 |
+
set ``inplace=True`` when initializing the nonlinearity layer.
|
374 |
+
apply_noise (bool, optional, default=False): If ``True``, adds
|
375 |
+
Gaussian noise with learnable magnitude to the convolution output.
|
376 |
+
order (str, optional, default='CNA'): Order of operations.
|
377 |
+
``'C'``: convolution,
|
378 |
+
``'N'``: normalization,
|
379 |
+
``'A'``: nonlinear activation.
|
380 |
+
For example, a block initialized with ``order='CNA'`` will
|
381 |
+
do convolution first, then normalization, then nonlinearity.
|
382 |
+
"""
|
383 |
+
|
384 |
+
def __init__(self, in_channels, out_channels, kernel_size, stride=1,
|
385 |
+
padding=0, dilation=1, groups=1, bias=True,
|
386 |
+
padding_mode='zeros',
|
387 |
+
weight_norm_type='none', weight_norm_params=None,
|
388 |
+
activation_norm_type='none', activation_norm_params=None,
|
389 |
+
nonlinearity='none', inplace_nonlinearity=False,
|
390 |
+
apply_noise=False,
|
391 |
+
order='CNA'):
|
392 |
+
super().__init__(in_channels, out_channels, kernel_size, stride,
|
393 |
+
padding, dilation, groups, bias, padding_mode,
|
394 |
+
weight_norm_type, weight_norm_params,
|
395 |
+
activation_norm_type, activation_norm_params,
|
396 |
+
nonlinearity, inplace_nonlinearity,
|
397 |
+
apply_noise, order, 3)
|
398 |
+
|
399 |
+
|
400 |
+
class _BaseHyperConvBlock(_BaseConvBlock):
|
401 |
+
r"""An abstract wrapper class that wraps a hyper convolutional layer
|
402 |
+
with normalization and nonlinearity.
|
403 |
+
"""
|
404 |
+
|
405 |
+
def __init__(self, in_channels, out_channels, kernel_size, stride,
|
406 |
+
padding, dilation, groups, bias,
|
407 |
+
padding_mode,
|
408 |
+
weight_norm_type, weight_norm_params,
|
409 |
+
activation_norm_type, activation_norm_params,
|
410 |
+
nonlinearity, inplace_nonlinearity, apply_noise,
|
411 |
+
is_hyper_conv, is_hyper_norm,
|
412 |
+
order, input_dim):
|
413 |
+
self.is_hyper_conv = is_hyper_conv
|
414 |
+
if is_hyper_conv:
|
415 |
+
weight_norm_type = 'none'
|
416 |
+
if is_hyper_norm:
|
417 |
+
activation_norm_type = 'hyper_' + activation_norm_type
|
418 |
+
super().__init__(in_channels, out_channels, kernel_size, stride,
|
419 |
+
padding, dilation, groups, bias, padding_mode,
|
420 |
+
weight_norm_type, weight_norm_params,
|
421 |
+
activation_norm_type, activation_norm_params,
|
422 |
+
nonlinearity, inplace_nonlinearity, apply_noise,
|
423 |
+
order, input_dim)
|
424 |
+
|
425 |
+
def _get_conv_layer(self, in_channels, out_channels, kernel_size, stride,
|
426 |
+
padding, dilation, groups, bias, padding_mode,
|
427 |
+
input_dim):
|
428 |
+
if input_dim == 0:
|
429 |
+
raise ValueError('HyperLinearBlock is not supported.')
|
430 |
+
else:
|
431 |
+
name = 'HyperConv' if self.is_hyper_conv else 'nn.Conv'
|
432 |
+
layer_type = eval(name + '%dd' % input_dim)
|
433 |
+
layer = layer_type(
|
434 |
+
in_channels, out_channels, kernel_size, stride, padding,
|
435 |
+
dilation, groups, bias, padding_mode)
|
436 |
+
return layer
|
437 |
+
|
438 |
+
|
439 |
+
class HyperConv2dBlock(_BaseHyperConvBlock):
|
440 |
+
r"""A Wrapper class that wraps ``HyperConv2d`` with normalization and
|
441 |
+
nonlinearity.
|
442 |
+
|
443 |
+
Args:
|
444 |
+
in_channels (int): Number of channels in the input tensor.
|
445 |
+
out_channels (int): Number of channels in the output tensor.
|
446 |
+
kernel_size (int or tuple): Size of the convolving kernel.
|
447 |
+
stride (int or tuple, optional, default=1):
|
448 |
+
Stride of the convolution.
|
449 |
+
padding (int or tuple, optional, default=0):
|
450 |
+
Zero-padding added to both sides of the input.
|
451 |
+
dilation (int or tuple, optional, default=1):
|
452 |
+
Spacing between kernel elements.
|
453 |
+
groups (int, optional, default=1): Number of blocked connections
|
454 |
+
from input channels to output channels.
|
455 |
+
bias (bool, optional, default=True):
|
456 |
+
If ``True``, adds a learnable bias to the output.
|
457 |
+
padding_mode (string, optional, default='zeros'): Type of padding:
|
458 |
+
``'zeros'``, ``'reflect'``, ``'replicate'`` or ``'circular'``.
|
459 |
+
weight_norm_type (str, optional, default='none'):
|
460 |
+
Type of weight normalization.
|
461 |
+
``'none'``, ``'spectral'``, ``'weight'``
|
462 |
+
or ``'weight_demod'``.
|
463 |
+
weight_norm_params (obj, optional, default=None):
|
464 |
+
Parameters of weight normalization.
|
465 |
+
If not ``None``, ``weight_norm_params.__dict__`` will be used as
|
466 |
+
keyword arguments when initializing weight normalization.
|
467 |
+
activation_norm_type (str, optional, default='none'):
|
468 |
+
Type of activation normalization.
|
469 |
+
``'none'``, ``'instance'``, ``'batch'``, ``'sync_batch'``,
|
470 |
+
``'layer'``, ``'layer_2d'``, ``'group'``, ``'adaptive'``,
|
471 |
+
``'spatially_adaptive'`` or ``'hyper_spatially_adaptive'``.
|
472 |
+
activation_norm_params (obj, optional, default=None):
|
473 |
+
Parameters of activation normalization.
|
474 |
+
If not ``None``, ``activation_norm_params.__dict__`` will be used as
|
475 |
+
keyword arguments when initializing activation normalization.
|
476 |
+
is_hyper_conv (bool, optional, default=False): If ``True``, use
|
477 |
+
``HyperConv2d``, otherwise use ``torch.nn.Conv2d``.
|
478 |
+
is_hyper_norm (bool, optional, default=False): If ``True``, use
|
479 |
+
hyper normalizations.
|
480 |
+
nonlinearity (str, optional, default='none'):
|
481 |
+
Type of nonlinear activation function.
|
482 |
+
``'none'``, ``'relu'``, ``'leakyrelu'``, ``'prelu'``,
|
483 |
+
``'tanh'`` , ``'sigmoid'`` or ``'softmax'``.
|
484 |
+
inplace_nonlinearity (bool, optional, default=False): If ``True``,
|
485 |
+
set ``inplace=True`` when initializing the nonlinearity layer.
|
486 |
+
apply_noise (bool, optional, default=False): If ``True``, adds
|
487 |
+
Gaussian noise with learnable magnitude to the convolution output.
|
488 |
+
order (str, optional, default='CNA'): Order of operations.
|
489 |
+
``'C'``: convolution,
|
490 |
+
``'N'``: normalization,
|
491 |
+
``'A'``: nonlinear activation.
|
492 |
+
For example, a block initialized with ``order='CNA'`` will
|
493 |
+
do convolution first, then normalization, then nonlinearity.
|
494 |
+
"""
|
495 |
+
|
496 |
+
def __init__(self, in_channels, out_channels, kernel_size, stride=1,
|
497 |
+
padding=0, dilation=1, groups=1, bias=True,
|
498 |
+
padding_mode='zeros',
|
499 |
+
weight_norm_type='none', weight_norm_params=None,
|
500 |
+
activation_norm_type='none', activation_norm_params=None,
|
501 |
+
is_hyper_conv=False, is_hyper_norm=False,
|
502 |
+
nonlinearity='none', inplace_nonlinearity=False,
|
503 |
+
apply_noise=False, order='CNA'):
|
504 |
+
super().__init__(in_channels, out_channels, kernel_size, stride,
|
505 |
+
padding, dilation, groups, bias, padding_mode,
|
506 |
+
weight_norm_type, weight_norm_params,
|
507 |
+
activation_norm_type, activation_norm_params,
|
508 |
+
nonlinearity, inplace_nonlinearity, apply_noise,
|
509 |
+
is_hyper_conv, is_hyper_norm, order, 2)
|
510 |
+
|
511 |
+
|
512 |
+
class HyperConv2d(nn.Module):
|
513 |
+
r"""Hyper Conv2d initialization.
|
514 |
+
|
515 |
+
Args:
|
516 |
+
in_channels (int): Dummy parameter.
|
517 |
+
out_channels (int): Dummy parameter.
|
518 |
+
kernel_size (int or tuple): Dummy parameter.
|
519 |
+
stride (int or tuple, optional, default=1):
|
520 |
+
Stride of the convolution. Default: 1
|
521 |
+
padding (int or tuple, optional, default=0):
|
522 |
+
Zero-padding added to both sides of the input.
|
523 |
+
padding_mode (string, optional, default='zeros'):
|
524 |
+
``'zeros'``, ``'reflect'``, ``'replicate'``
|
525 |
+
or ``'circular'``.
|
526 |
+
dilation (int or tuple, optional, default=1):
|
527 |
+
Spacing between kernel elements.
|
528 |
+
groups (int, optional, default=1): Number of blocked connections
|
529 |
+
from input channels to output channels.
|
530 |
+
bias (bool, optional, default=True): If ``True``,
|
531 |
+
adds a learnable bias to the output.
|
532 |
+
"""
|
533 |
+
|
534 |
+
def __init__(self, in_channels=0, out_channels=0, kernel_size=3,
|
535 |
+
stride=1, padding=1, dilation=1, groups=1, bias=True,
|
536 |
+
padding_mode='zeros'):
|
537 |
+
super().__init__()
|
538 |
+
self.stride = stride
|
539 |
+
self.padding = padding
|
540 |
+
self.dilation = dilation
|
541 |
+
self.groups = groups
|
542 |
+
self.use_bias = bias
|
543 |
+
self.padding_mode = padding_mode
|
544 |
+
self.conditional = True
|
545 |
+
|
546 |
+
def forward(self, x, *args, conv_weights=(None, None), **kwargs):
|
547 |
+
r"""Hyper Conv2d forward. Convolve x using the provided weight and bias.
|
548 |
+
|
549 |
+
Args:
|
550 |
+
x (N x C x H x W tensor): Input tensor.
|
551 |
+
conv_weights (N x C2 x C1 x k x k tensor or list of tensors):
|
552 |
+
Convolution weights or [weight, bias].
|
553 |
+
Returns:
|
554 |
+
y (N x C2 x H x W tensor): Output tensor.
|
555 |
+
"""
|
556 |
+
if conv_weights is None:
|
557 |
+
conv_weight, conv_bias = None, None
|
558 |
+
elif isinstance(conv_weights, torch.Tensor):
|
559 |
+
conv_weight, conv_bias = conv_weights, None
|
560 |
+
else:
|
561 |
+
conv_weight, conv_bias = conv_weights
|
562 |
+
|
563 |
+
if conv_weight is None:
|
564 |
+
return x
|
565 |
+
if conv_bias is None:
|
566 |
+
if self.use_bias:
|
567 |
+
raise ValueError('bias not provided but set to true during '
|
568 |
+
'initialization')
|
569 |
+
conv_bias = [None] * x.size(0)
|
570 |
+
if self.padding_mode != 'zeros':
|
571 |
+
x = F.pad(x, [self.padding] * 4, mode=self.padding_mode)
|
572 |
+
padding = 0
|
573 |
+
else:
|
574 |
+
padding = self.padding
|
575 |
+
|
576 |
+
y = None
|
577 |
+
for i in range(x.size(0)):
|
578 |
+
if self.stride >= 1:
|
579 |
+
yi = F.conv2d(x[i: i + 1],
|
580 |
+
weight=conv_weight[i], bias=conv_bias[i],
|
581 |
+
stride=self.stride, padding=padding,
|
582 |
+
dilation=self.dilation, groups=self.groups)
|
583 |
+
else:
|
584 |
+
yi = F.conv_transpose2d(x[i: i + 1], weight=conv_weight[i],
|
585 |
+
bias=conv_bias[i], padding=self.padding,
|
586 |
+
stride=int(1 / self.stride),
|
587 |
+
dilation=self.dilation,
|
588 |
+
output_padding=self.padding,
|
589 |
+
groups=self.groups)
|
590 |
+
y = torch.cat([y, yi]) if y is not None else yi
|
591 |
+
return y
|
592 |
+
|
593 |
+
|
594 |
+
class _BasePartialConvBlock(_BaseConvBlock):
|
595 |
+
r"""An abstract wrapper class that wraps a partial convolutional layer
|
596 |
+
with normalization and nonlinearity.
|
597 |
+
"""
|
598 |
+
|
599 |
+
def __init__(self, in_channels, out_channels, kernel_size, stride,
|
600 |
+
padding, dilation, groups, bias, padding_mode,
|
601 |
+
weight_norm_type, weight_norm_params,
|
602 |
+
activation_norm_type, activation_norm_params,
|
603 |
+
nonlinearity, inplace_nonlinearity,
|
604 |
+
multi_channel, return_mask,
|
605 |
+
apply_noise, order, input_dim):
|
606 |
+
self.multi_channel = multi_channel
|
607 |
+
self.return_mask = return_mask
|
608 |
+
self.partial_conv = True
|
609 |
+
super().__init__(in_channels, out_channels, kernel_size, stride,
|
610 |
+
padding, dilation, groups, bias, padding_mode,
|
611 |
+
weight_norm_type, weight_norm_params,
|
612 |
+
activation_norm_type, activation_norm_params,
|
613 |
+
nonlinearity, inplace_nonlinearity, apply_noise,
|
614 |
+
order, input_dim)
|
615 |
+
|
616 |
+
def _get_conv_layer(self, in_channels, out_channels, kernel_size, stride,
|
617 |
+
padding, dilation, groups, bias, padding_mode,
|
618 |
+
input_dim):
|
619 |
+
if input_dim == 2:
|
620 |
+
layer_type = PartialConv2d
|
621 |
+
elif input_dim == 3:
|
622 |
+
layer_type = PartialConv3d
|
623 |
+
else:
|
624 |
+
raise ValueError('Partial conv only supports 2D and 3D conv now.')
|
625 |
+
layer = layer_type(
|
626 |
+
in_channels, out_channels, kernel_size, stride, padding,
|
627 |
+
dilation, groups, bias, padding_mode,
|
628 |
+
multi_channel=self.multi_channel, return_mask=self.return_mask)
|
629 |
+
return layer
|
630 |
+
|
631 |
+
def forward(self, x, *cond_inputs, mask_in=None, **kw_cond_inputs):
|
632 |
+
r"""
|
633 |
+
|
634 |
+
Args:
|
635 |
+
x (tensor): Input tensor.
|
636 |
+
cond_inputs (list of tensors) : Conditional input tensors.
|
637 |
+
mask_in (tensor, optional, default=``None``) If not ``None``,
|
638 |
+
it masks the valid input region.
|
639 |
+
kw_cond_inputs (dict) : Keyword conditional inputs.
|
640 |
+
Returns:
|
641 |
+
(tuple):
|
642 |
+
- x (tensor): Output tensor.
|
643 |
+
- mask_out (tensor, optional): Masks the valid output region.
|
644 |
+
"""
|
645 |
+
mask_out = None
|
646 |
+
for layer in self.layers.values():
|
647 |
+
if getattr(layer, 'conditional', False):
|
648 |
+
x = layer(x, *cond_inputs, **kw_cond_inputs)
|
649 |
+
elif getattr(layer, 'partial_conv', False):
|
650 |
+
x = layer(x, mask_in=mask_in, **kw_cond_inputs)
|
651 |
+
if type(x) == tuple:
|
652 |
+
x, mask_out = x
|
653 |
+
else:
|
654 |
+
x = layer(x)
|
655 |
+
|
656 |
+
if mask_out is not None:
|
657 |
+
return x, mask_out
|
658 |
+
return x
|
659 |
+
|
660 |
+
|
661 |
+
class PartialConv2dBlock(_BasePartialConvBlock):
|
662 |
+
r"""A Wrapper class that wraps ``PartialConv2d`` with normalization and
|
663 |
+
nonlinearity.
|
664 |
+
|
665 |
+
Args:
|
666 |
+
in_channels (int): Number of channels in the input tensor.
|
667 |
+
out_channels (int): Number of channels in the output tensor.
|
668 |
+
kernel_size (int or tuple): Size of the convolving kernel.
|
669 |
+
stride (int or tuple, optional, default=1):
|
670 |
+
Stride of the convolution.
|
671 |
+
padding (int or tuple, optional, default=0):
|
672 |
+
Zero-padding added to both sides of the input.
|
673 |
+
dilation (int or tuple, optional, default=1):
|
674 |
+
Spacing between kernel elements.
|
675 |
+
groups (int, optional, default=1): Number of blocked connections
|
676 |
+
from input channels to output channels.
|
677 |
+
bias (bool, optional, default=True):
|
678 |
+
If ``True``, adds a learnable bias to the output.
|
679 |
+
padding_mode (string, optional, default='zeros'): Type of padding:
|
680 |
+
``'zeros'``, ``'reflect'``, ``'replicate'`` or ``'circular'``.
|
681 |
+
weight_norm_type (str, optional, default='none'):
|
682 |
+
Type of weight normalization.
|
683 |
+
``'none'``, ``'spectral'``, ``'weight'``
|
684 |
+
or ``'weight_demod'``.
|
685 |
+
weight_norm_params (obj, optional, default=None):
|
686 |
+
Parameters of weight normalization.
|
687 |
+
If not ``None``, ``weight_norm_params.__dict__`` will be used as
|
688 |
+
keyword arguments when initializing weight normalization.
|
689 |
+
activation_norm_type (str, optional, default='none'):
|
690 |
+
Type of activation normalization.
|
691 |
+
``'none'``, ``'instance'``, ``'batch'``, ``'sync_batch'``,
|
692 |
+
``'layer'``, ``'layer_2d'``, ``'group'``, ``'adaptive'``,
|
693 |
+
``'spatially_adaptive'`` or ``'hyper_spatially_adaptive'``.
|
694 |
+
activation_norm_params (obj, optional, default=None):
|
695 |
+
Parameters of activation normalization.
|
696 |
+
If not ``None``, ``activation_norm_params.__dict__`` will be used as
|
697 |
+
keyword arguments when initializing activation normalization.
|
698 |
+
nonlinearity (str, optional, default='none'):
|
699 |
+
Type of nonlinear activation function.
|
700 |
+
``'none'``, ``'relu'``, ``'leakyrelu'``, ``'prelu'``,
|
701 |
+
``'tanh'`` , ``'sigmoid'`` or ``'softmax'``.
|
702 |
+
inplace_nonlinearity (bool, optional, default=False): If ``True``,
|
703 |
+
set ``inplace=True`` when initializing the nonlinearity layer.
|
704 |
+
apply_noise (bool, optional, default=False): If ``True``, adds
|
705 |
+
Gaussian noise with learnable magnitude to the convolution output.
|
706 |
+
order (str, optional, default='CNA'): Order of operations.
|
707 |
+
``'C'``: convolution,
|
708 |
+
``'N'``: normalization,
|
709 |
+
``'A'``: nonlinear activation.
|
710 |
+
For example, a block initialized with ``order='CNA'`` will
|
711 |
+
do convolution first, then normalization, then nonlinearity.
|
712 |
+
multi_channel (bool, optional, default=False): If ``True``, use
|
713 |
+
different masks for different channels.
|
714 |
+
return_mask (bool, optional, default=True): If ``True``, the
|
715 |
+
forward call also returns a new mask.
|
716 |
+
"""
|
717 |
+
|
718 |
+
def __init__(self, in_channels, out_channels, kernel_size, stride=1,
|
719 |
+
padding=0, dilation=1, groups=1, bias=True,
|
720 |
+
padding_mode='zeros',
|
721 |
+
weight_norm_type='none', weight_norm_params=None,
|
722 |
+
activation_norm_type='none', activation_norm_params=None,
|
723 |
+
nonlinearity='none', inplace_nonlinearity=False,
|
724 |
+
multi_channel=False, return_mask=True,
|
725 |
+
apply_noise=False, order='CNA'):
|
726 |
+
super().__init__(in_channels, out_channels, kernel_size, stride,
|
727 |
+
padding, dilation, groups, bias, padding_mode,
|
728 |
+
weight_norm_type, weight_norm_params,
|
729 |
+
activation_norm_type, activation_norm_params,
|
730 |
+
nonlinearity, inplace_nonlinearity,
|
731 |
+
multi_channel, return_mask, apply_noise, order, 2)
|
732 |
+
|
733 |
+
|
734 |
+
class PartialConv3dBlock(_BasePartialConvBlock):
|
735 |
+
r"""A Wrapper class that wraps ``PartialConv3d`` with normalization and
|
736 |
+
nonlinearity.
|
737 |
+
|
738 |
+
Args:
|
739 |
+
in_channels (int): Number of channels in the input tensor.
|
740 |
+
out_channels (int): Number of channels in the output tensor.
|
741 |
+
kernel_size (int or tuple): Size of the convolving kernel.
|
742 |
+
stride (int or tuple, optional, default=1):
|
743 |
+
Stride of the convolution.
|
744 |
+
padding (int or tuple, optional, default=0):
|
745 |
+
Zero-padding added to both sides of the input.
|
746 |
+
dilation (int or tuple, optional, default=1):
|
747 |
+
Spacing between kernel elements.
|
748 |
+
groups (int, optional, default=1): Number of blocked connections
|
749 |
+
from input channels to output channels.
|
750 |
+
bias (bool, optional, default=True):
|
751 |
+
If ``True``, adds a learnable bias to the output.
|
752 |
+
padding_mode (string, optional, default='zeros'): Type of padding:
|
753 |
+
``'zeros'``, ``'reflect'``, ``'replicate'`` or ``'circular'``.
|
754 |
+
weight_norm_type (str, optional, default='none'):
|
755 |
+
Type of weight normalization.
|
756 |
+
``'none'``, ``'spectral'``, ``'weight'``
|
757 |
+
or ``'weight_demod'``.
|
758 |
+
weight_norm_params (obj, optional, default=None):
|
759 |
+
Parameters of weight normalization.
|
760 |
+
If not ``None``, ``weight_norm_params.__dict__`` will be used as
|
761 |
+
keyword arguments when initializing weight normalization.
|
762 |
+
activation_norm_type (str, optional, default='none'):
|
763 |
+
Type of activation normalization.
|
764 |
+
``'none'``, ``'instance'``, ``'batch'``, ``'sync_batch'``,
|
765 |
+
``'layer'``, ``'layer_2d'``, ``'group'``, ``'adaptive'``,
|
766 |
+
``'spatially_adaptive'`` or ``'hyper_spatially_adaptive'``.
|
767 |
+
activation_norm_params (obj, optional, default=None):
|
768 |
+
Parameters of activation normalization.
|
769 |
+
If not ``None``, ``activation_norm_params.__dict__`` will be used as
|
770 |
+
keyword arguments when initializing activation normalization.
|
771 |
+
nonlinearity (str, optional, default='none'):
|
772 |
+
Type of nonlinear activation function.
|
773 |
+
``'none'``, ``'relu'``, ``'leakyrelu'``, ``'prelu'``,
|
774 |
+
``'tanh'`` , ``'sigmoid'`` or ``'softmax'``.
|
775 |
+
inplace_nonlinearity (bool, optional, default=False): If ``True``,
|
776 |
+
set ``inplace=True`` when initializing the nonlinearity layer.
|
777 |
+
apply_noise (bool, optional, default=False): If ``True``, adds
|
778 |
+
Gaussian noise with learnable magnitude to the convolution output.
|
779 |
+
order (str, optional, default='CNA'): Order of operations.
|
780 |
+
``'C'``: convolution,
|
781 |
+
``'N'``: normalization,
|
782 |
+
``'A'``: nonlinear activation.
|
783 |
+
For example, a block initialized with ``order='CNA'`` will
|
784 |
+
do convolution first, then normalization, then nonlinearity.
|
785 |
+
multi_channel (bool, optional, default=False): If ``True``, use
|
786 |
+
different masks for different channels.
|
787 |
+
return_mask (bool, optional, default=True): If ``True``, the
|
788 |
+
forward call also returns a new mask.
|
789 |
+
"""
|
790 |
+
|
791 |
+
def __init__(self, in_channels, out_channels, kernel_size, stride=1,
|
792 |
+
padding=0, dilation=1, groups=1, bias=True,
|
793 |
+
padding_mode='zeros',
|
794 |
+
weight_norm_type='none', weight_norm_params=None,
|
795 |
+
activation_norm_type='none', activation_norm_params=None,
|
796 |
+
nonlinearity='none', inplace_nonlinearity=False,
|
797 |
+
multi_channel=False, return_mask=True,
|
798 |
+
apply_noise=False, order='CNA'):
|
799 |
+
super().__init__(in_channels, out_channels, kernel_size, stride,
|
800 |
+
padding, dilation, groups, bias, padding_mode,
|
801 |
+
weight_norm_type, weight_norm_params,
|
802 |
+
activation_norm_type, activation_norm_params,
|
803 |
+
nonlinearity, inplace_nonlinearity,
|
804 |
+
multi_channel, return_mask, apply_noise, order, 3)
|
805 |
+
|
806 |
+
|
807 |
+
class _MultiOutBaseConvBlock(_BaseConvBlock):
|
808 |
+
r"""An abstract wrapper class that wraps a hyper convolutional layer with
|
809 |
+
normalization and nonlinearity. It can return multiple outputs, if some
|
810 |
+
layers in the block return more than one output.
|
811 |
+
"""
|
812 |
+
|
813 |
+
def __init__(self, in_channels, out_channels, kernel_size, stride,
|
814 |
+
padding, dilation, groups, bias,
|
815 |
+
padding_mode,
|
816 |
+
weight_norm_type, weight_norm_params,
|
817 |
+
activation_norm_type, activation_norm_params,
|
818 |
+
nonlinearity, inplace_nonlinearity,
|
819 |
+
apply_noise, order, input_dim):
|
820 |
+
super().__init__(in_channels, out_channels, kernel_size, stride,
|
821 |
+
padding, dilation, groups, bias, padding_mode,
|
822 |
+
weight_norm_type, weight_norm_params,
|
823 |
+
activation_norm_type, activation_norm_params,
|
824 |
+
nonlinearity, inplace_nonlinearity,
|
825 |
+
apply_noise, order, input_dim)
|
826 |
+
self.multiple_outputs = True
|
827 |
+
|
828 |
+
def forward(self, x, *cond_inputs, **kw_cond_inputs):
|
829 |
+
r"""
|
830 |
+
|
831 |
+
Args:
|
832 |
+
x (tensor): Input tensor.
|
833 |
+
cond_inputs (list of tensors) : Conditional input tensors.
|
834 |
+
kw_cond_inputs (dict) : Keyword conditional inputs.
|
835 |
+
Returns:
|
836 |
+
(tuple):
|
837 |
+
- x (tensor): Main output tensor.
|
838 |
+
- other_outputs (list of tensors): Other output tensors.
|
839 |
+
"""
|
840 |
+
other_outputs = []
|
841 |
+
for layer in self.layers.values():
|
842 |
+
if getattr(layer, 'conditional', False):
|
843 |
+
x = layer(x, *cond_inputs, **kw_cond_inputs)
|
844 |
+
if getattr(layer, 'multiple_outputs', False):
|
845 |
+
x, other_output = layer(x)
|
846 |
+
other_outputs.append(other_output)
|
847 |
+
else:
|
848 |
+
x = layer(x)
|
849 |
+
return (x, *other_outputs)
|
850 |
+
|
851 |
+
|
852 |
+
class MultiOutConv2dBlock(_MultiOutBaseConvBlock):
|
853 |
+
r"""A Wrapper class that wraps ``torch.nn.Conv2d`` with normalization and
|
854 |
+
nonlinearity. It can return multiple outputs, if some layers in the block
|
855 |
+
return more than one output.
|
856 |
+
|
857 |
+
Args:
|
858 |
+
in_channels (int): Number of channels in the input tensor.
|
859 |
+
out_channels (int): Number of channels in the output tensor.
|
860 |
+
kernel_size (int or tuple): Size of the convolving kernel.
|
861 |
+
stride (int or tuple, optional, default=1):
|
862 |
+
Stride of the convolution.
|
863 |
+
padding (int or tuple, optional, default=0):
|
864 |
+
Zero-padding added to both sides of the input.
|
865 |
+
dilation (int or tuple, optional, default=1):
|
866 |
+
Spacing between kernel elements.
|
867 |
+
groups (int, optional, default=1): Number of blocked connections
|
868 |
+
from input channels to output channels.
|
869 |
+
bias (bool, optional, default=True):
|
870 |
+
If ``True``, adds a learnable bias to the output.
|
871 |
+
padding_mode (string, optional, default='zeros'): Type of padding:
|
872 |
+
``'zeros'``, ``'reflect'``, ``'replicate'`` or ``'circular'``.
|
873 |
+
weight_norm_type (str, optional, default='none'):
|
874 |
+
Type of weight normalization.
|
875 |
+
``'none'``, ``'spectral'``, ``'weight'``
|
876 |
+
or ``'weight_demod'``.
|
877 |
+
weight_norm_params (obj, optional, default=None):
|
878 |
+
Parameters of weight normalization.
|
879 |
+
If not ``None``, ``weight_norm_params.__dict__`` will be used as
|
880 |
+
keyword arguments when initializing weight normalization.
|
881 |
+
activation_norm_type (str, optional, default='none'):
|
882 |
+
Type of activation normalization.
|
883 |
+
``'none'``, ``'instance'``, ``'batch'``, ``'sync_batch'``,
|
884 |
+
``'layer'``, ``'layer_2d'``, ``'group'``, ``'adaptive'``,
|
885 |
+
``'spatially_adaptive'`` or ``'hyper_spatially_adaptive'``.
|
886 |
+
activation_norm_params (obj, optional, default=None):
|
887 |
+
Parameters of activation normalization.
|
888 |
+
If not ``None``, ``activation_norm_params.__dict__`` will be used as
|
889 |
+
keyword arguments when initializing activation normalization.
|
890 |
+
nonlinearity (str, optional, default='none'):
|
891 |
+
Type of nonlinear activation function.
|
892 |
+
``'none'``, ``'relu'``, ``'leakyrelu'``, ``'prelu'``,
|
893 |
+
``'tanh'`` , ``'sigmoid'`` or ``'softmax'``.
|
894 |
+
inplace_nonlinearity (bool, optional, default=False): If ``True``,
|
895 |
+
set ``inplace=True`` when initializing the nonlinearity layer.
|
896 |
+
apply_noise (bool, optional, default=False): If ``True``, adds
|
897 |
+
Gaussian noise with learnable magnitude to the convolution output.
|
898 |
+
order (str, optional, default='CNA'): Order of operations.
|
899 |
+
``'C'``: convolution,
|
900 |
+
``'N'``: normalization,
|
901 |
+
``'A'``: nonlinear activation.
|
902 |
+
For example, a block initialized with ``order='CNA'`` will
|
903 |
+
do convolution first, then normalization, then nonlinearity.
|
904 |
+
"""
|
905 |
+
|
906 |
+
def __init__(self, in_channels, out_channels, kernel_size, stride=1,
|
907 |
+
padding=0, dilation=1, groups=1, bias=True,
|
908 |
+
padding_mode='zeros',
|
909 |
+
weight_norm_type='none', weight_norm_params=None,
|
910 |
+
activation_norm_type='none', activation_norm_params=None,
|
911 |
+
nonlinearity='none', inplace_nonlinearity=False,
|
912 |
+
apply_noise=False, order='CNA'):
|
913 |
+
super().__init__(in_channels, out_channels, kernel_size, stride,
|
914 |
+
padding, dilation, groups, bias, padding_mode,
|
915 |
+
weight_norm_type, weight_norm_params,
|
916 |
+
activation_norm_type, activation_norm_params,
|
917 |
+
nonlinearity, inplace_nonlinearity,
|
918 |
+
apply_noise, order, 2)
|
919 |
+
|
920 |
+
|
921 |
+
###############################################################################
|
922 |
+
# BSD 3-Clause License
|
923 |
+
#
|
924 |
+
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
925 |
+
#
|
926 |
+
# Author & Contact: Guilin Liu ([email protected])
|
927 |
+
###############################################################################
|
928 |
+
class PartialConv2d(nn.Conv2d):
|
929 |
+
r"""Partial 2D convolution in
|
930 |
+
"Image inpainting for irregular holes using partial convolutions."
|
931 |
+
Liu et al., ECCV 2018
|
932 |
+
"""
|
933 |
+
|
934 |
+
def __init__(self, *args, multi_channel=False, return_mask=True, **kwargs):
|
935 |
+
# whether the mask is multi-channel or not
|
936 |
+
self.multi_channel = multi_channel
|
937 |
+
self.return_mask = return_mask
|
938 |
+
super(PartialConv2d, self).__init__(*args, **kwargs)
|
939 |
+
|
940 |
+
if self.multi_channel:
|
941 |
+
self.weight_maskUpdater = torch.ones(self.out_channels,
|
942 |
+
self.in_channels,
|
943 |
+
self.kernel_size[0],
|
944 |
+
self.kernel_size[1])
|
945 |
+
else:
|
946 |
+
self.weight_maskUpdater = torch.ones(1, 1, self.kernel_size[0],
|
947 |
+
self.kernel_size[1])
|
948 |
+
|
949 |
+
shape = self.weight_maskUpdater.shape
|
950 |
+
self.slide_winsize = shape[1] * shape[2] * shape[3]
|
951 |
+
|
952 |
+
self.last_size = (None, None, None, None)
|
953 |
+
self.update_mask = None
|
954 |
+
self.mask_ratio = None
|
955 |
+
self.partial_conv = True
|
956 |
+
|
957 |
+
def forward(self, x, mask_in=None):
|
958 |
+
r"""
|
959 |
+
|
960 |
+
Args:
|
961 |
+
x (tensor): Input tensor.
|
962 |
+
mask_in (tensor, optional, default=``None``) If not ``None``,
|
963 |
+
it masks the valid input region.
|
964 |
+
"""
|
965 |
+
assert len(x.shape) == 4
|
966 |
+
if mask_in is not None or self.last_size != tuple(x.shape):
|
967 |
+
self.last_size = tuple(x.shape)
|
968 |
+
|
969 |
+
with torch.no_grad():
|
970 |
+
if self.weight_maskUpdater.type() != x.type():
|
971 |
+
self.weight_maskUpdater = self.weight_maskUpdater.to(x)
|
972 |
+
|
973 |
+
if mask_in is None:
|
974 |
+
# If mask is not provided, create a mask.
|
975 |
+
if self.multi_channel:
|
976 |
+
mask = torch.ones(x.data.shape[0],
|
977 |
+
x.data.shape[1],
|
978 |
+
x.data.shape[2],
|
979 |
+
x.data.shape[3]).to(x)
|
980 |
+
else:
|
981 |
+
mask = torch.ones(1, 1, x.data.shape[2],
|
982 |
+
x.data.shape[3]).to(x)
|
983 |
+
else:
|
984 |
+
mask = mask_in
|
985 |
+
|
986 |
+
self.update_mask = F.conv2d(mask, self.weight_maskUpdater,
|
987 |
+
bias=None, stride=self.stride,
|
988 |
+
padding=self.padding,
|
989 |
+
dilation=self.dilation, groups=1)
|
990 |
+
|
991 |
+
# For mixed precision training, eps from 1e-8 to 1e-6.
|
992 |
+
eps = 1e-6
|
993 |
+
self.mask_ratio = self.slide_winsize / (self.update_mask + eps)
|
994 |
+
self.update_mask = torch.clamp(self.update_mask, 0, 1)
|
995 |
+
self.mask_ratio = torch.mul(self.mask_ratio, self.update_mask)
|
996 |
+
|
997 |
+
raw_out = super(PartialConv2d, self).forward(
|
998 |
+
torch.mul(x, mask) if mask_in is not None else x)
|
999 |
+
|
1000 |
+
if self.bias is not None:
|
1001 |
+
bias_view = self.bias.view(1, self.out_channels, 1, 1)
|
1002 |
+
output = torch.mul(raw_out - bias_view, self.mask_ratio) + bias_view
|
1003 |
+
output = torch.mul(output, self.update_mask)
|
1004 |
+
else:
|
1005 |
+
output = torch.mul(raw_out, self.mask_ratio)
|
1006 |
+
|
1007 |
+
if self.return_mask:
|
1008 |
+
return output, self.update_mask
|
1009 |
+
else:
|
1010 |
+
return output
|
1011 |
+
|
1012 |
+
|
1013 |
+
class PartialConv3d(nn.Conv3d):
|
1014 |
+
r"""Partial 3D convolution in
|
1015 |
+
"Image inpainting for irregular holes using partial convolutions."
|
1016 |
+
Liu et al., ECCV 2018
|
1017 |
+
"""
|
1018 |
+
|
1019 |
+
def __init__(self, *args, multi_channel=False, return_mask=True, **kwargs):
|
1020 |
+
# whether the mask is multi-channel or not
|
1021 |
+
self.multi_channel = multi_channel
|
1022 |
+
self.return_mask = return_mask
|
1023 |
+
super(PartialConv3d, self).__init__(*args, **kwargs)
|
1024 |
+
|
1025 |
+
if self.multi_channel:
|
1026 |
+
self.weight_maskUpdater = \
|
1027 |
+
torch.ones(self.out_channels, self.in_channels,
|
1028 |
+
self.kernel_size[0], self.kernel_size[1],
|
1029 |
+
self.kernel_size[2])
|
1030 |
+
else:
|
1031 |
+
self.weight_maskUpdater = torch.ones(1, 1, self.kernel_size[0],
|
1032 |
+
self.kernel_size[1],
|
1033 |
+
self.kernel_size[2])
|
1034 |
+
self.weight_maskUpdater = self.weight_maskUpdater.to('cuda')
|
1035 |
+
|
1036 |
+
shape = self.weight_maskUpdater.shape
|
1037 |
+
self.slide_winsize = shape[1] * shape[2] * shape[3] * shape[4]
|
1038 |
+
self.partial_conv = True
|
1039 |
+
|
1040 |
+
def forward(self, x, mask_in=None):
|
1041 |
+
r"""
|
1042 |
+
|
1043 |
+
Args:
|
1044 |
+
x (tensor): Input tensor.
|
1045 |
+
mask_in (tensor, optional, default=``None``) If not ``None``, it
|
1046 |
+
masks the valid input region.
|
1047 |
+
"""
|
1048 |
+
assert len(x.shape) == 5
|
1049 |
+
|
1050 |
+
with torch.no_grad():
|
1051 |
+
mask = mask_in
|
1052 |
+
update_mask = F.conv3d(mask, self.weight_maskUpdater, bias=None,
|
1053 |
+
stride=self.stride, padding=self.padding,
|
1054 |
+
dilation=self.dilation, groups=1)
|
1055 |
+
|
1056 |
+
mask_ratio = self.slide_winsize / (update_mask + 1e-8)
|
1057 |
+
update_mask = torch.clamp(update_mask, 0, 1)
|
1058 |
+
mask_ratio = torch.mul(mask_ratio, update_mask)
|
1059 |
+
|
1060 |
+
raw_out = super(PartialConv3d, self).forward(torch.mul(x, mask_in))
|
1061 |
+
|
1062 |
+
if self.bias is not None:
|
1063 |
+
bias_view = self.bias.view(1, self.out_channels, 1, 1, 1)
|
1064 |
+
output = torch.mul(raw_out - bias_view, mask_ratio) + bias_view
|
1065 |
+
if mask_in is not None:
|
1066 |
+
output = torch.mul(output, update_mask)
|
1067 |
+
else:
|
1068 |
+
output = torch.mul(raw_out, mask_ratio)
|
1069 |
+
|
1070 |
+
if self.return_mask:
|
1071 |
+
return output, update_mask
|
1072 |
+
else:
|
1073 |
+
return output
|
models/layers/misc.py
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (C) 2020 NVIDIA Corporation. All rights reserved.
|
2 |
+
#
|
3 |
+
# This work is made available under the Nvidia Source Code License-NC.
|
4 |
+
# To view a copy of this license, check out LICENSE.md
|
5 |
+
import torch
|
6 |
+
from torch import nn
|
7 |
+
|
8 |
+
|
9 |
+
class ApplyNoise(nn.Module):
|
10 |
+
r"""Add Gaussian noise to the input tensor."""
|
11 |
+
|
12 |
+
def __init__(self):
|
13 |
+
super().__init__()
|
14 |
+
# scale of the noise
|
15 |
+
self.weight = nn.Parameter(torch.zeros(1))
|
16 |
+
|
17 |
+
def forward(self, x, noise=None):
|
18 |
+
r"""
|
19 |
+
|
20 |
+
Args:
|
21 |
+
x (tensor): Input tensor.
|
22 |
+
noise (tensor, optional, default=``None``) : Noise tensor to be
|
23 |
+
added to the input.
|
24 |
+
"""
|
25 |
+
if noise is None:
|
26 |
+
sz = x.size()
|
27 |
+
noise = x.new_empty(sz[0], 1, *sz[2:]).normal_()
|
28 |
+
|
29 |
+
return x + self.weight * noise
|
30 |
+
|
31 |
+
|
32 |
+
class PartialSequential(nn.Sequential):
|
33 |
+
r"""Sequential block for partial convolutions."""
|
34 |
+
def __init__(self, *modules):
|
35 |
+
super(PartialSequential, self).__init__(*modules)
|
36 |
+
|
37 |
+
def forward(self, x):
|
38 |
+
r"""
|
39 |
+
|
40 |
+
Args:
|
41 |
+
x (tensor): Input tensor.
|
42 |
+
"""
|
43 |
+
act = x[:, :-1]
|
44 |
+
mask = x[:, -1].unsqueeze(1)
|
45 |
+
for module in self:
|
46 |
+
act, mask = module(act, mask_in=mask)
|
47 |
+
return act
|
models/layers/non_local.py
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (C) 2020 NVIDIA Corporation. All rights reserved.
|
2 |
+
#
|
3 |
+
# This work is made available under the Nvidia Source Code License-NC.
|
4 |
+
# To view a copy of this license, check out LICENSE.md
|
5 |
+
from functools import partial
|
6 |
+
|
7 |
+
import torch
|
8 |
+
import torch.nn as nn
|
9 |
+
|
10 |
+
from imaginaire.layers import Conv2dBlock
|
11 |
+
|
12 |
+
|
13 |
+
class NonLocal2dBlock(nn.Module):
|
14 |
+
r"""Self attention Layer
|
15 |
+
|
16 |
+
Args:
|
17 |
+
in_channels (int): Number of channels in the input tensor.
|
18 |
+
scale (bool, optional, default=True): If ``True``, scale the
|
19 |
+
output by a learnable parameter.
|
20 |
+
clamp (bool, optional, default=``False``): If ``True``, clamp the
|
21 |
+
scaling parameter to (-1, 1).
|
22 |
+
weight_norm_type (str, optional, default='none'):
|
23 |
+
Type of weight normalization.
|
24 |
+
``'none'``, ``'spectral'``, ``'weight'``
|
25 |
+
or ``'weight_demod'``.
|
26 |
+
"""
|
27 |
+
|
28 |
+
def __init__(self,
|
29 |
+
in_channels,
|
30 |
+
scale=True,
|
31 |
+
clamp=False,
|
32 |
+
weight_norm_type='none'):
|
33 |
+
super(NonLocal2dBlock, self).__init__()
|
34 |
+
self.clamp = clamp
|
35 |
+
self.gamma = nn.Parameter(torch.zeros(1)) if scale else 1.0
|
36 |
+
self.in_channels = in_channels
|
37 |
+
base_conv2d_block = partial(Conv2dBlock,
|
38 |
+
kernel_size=1,
|
39 |
+
stride=1,
|
40 |
+
padding=0,
|
41 |
+
weight_norm_type=weight_norm_type)
|
42 |
+
self.theta = base_conv2d_block(in_channels, in_channels // 8)
|
43 |
+
self.phi = base_conv2d_block(in_channels, in_channels // 8)
|
44 |
+
self.g = base_conv2d_block(in_channels, in_channels // 2)
|
45 |
+
self.out_conv = base_conv2d_block(in_channels // 2, in_channels)
|
46 |
+
self.softmax = nn.Softmax(dim=-1)
|
47 |
+
self.max_pool = nn.MaxPool2d(2)
|
48 |
+
|
49 |
+
def forward(self, x):
|
50 |
+
r"""
|
51 |
+
|
52 |
+
Args:
|
53 |
+
x (tensor) : input feature maps (B X C X W X H)
|
54 |
+
Returns:
|
55 |
+
(tuple):
|
56 |
+
- out (tensor) : self attention value + input feature
|
57 |
+
- attention (tensor): B x N x N (N is Width*Height)
|
58 |
+
"""
|
59 |
+
n, c, h, w = x.size()
|
60 |
+
theta = self.theta(x).view(n, -1, h * w).permute(0, 2, 1)
|
61 |
+
|
62 |
+
phi = self.phi(x)
|
63 |
+
phi = self.max_pool(phi).view(n, -1, h * w // 4)
|
64 |
+
|
65 |
+
energy = torch.bmm(theta, phi)
|
66 |
+
attention = self.softmax(energy)
|
67 |
+
|
68 |
+
g = self.g(x)
|
69 |
+
g = self.max_pool(g).view(n, -1, h * w // 4)
|
70 |
+
|
71 |
+
out = torch.bmm(g, attention.permute(0, 2, 1))
|
72 |
+
out = out.view(n, c // 2, h, w)
|
73 |
+
out = self.out_conv(out)
|
74 |
+
|
75 |
+
if self.clamp:
|
76 |
+
out = self.gamma.clamp(-1, 1) * out + x
|
77 |
+
else:
|
78 |
+
out = self.gamma * out + x
|
79 |
+
return out
|
models/layers/nonlinearity.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (C) 2020 NVIDIA Corporation. All rights reserved.
|
2 |
+
#
|
3 |
+
# This work is made available under the Nvidia Source Code License-NC.
|
4 |
+
# To view a copy of this license, check out LICENSE.md
|
5 |
+
from torch import nn
|
6 |
+
|
7 |
+
|
8 |
+
def get_nonlinearity_layer(nonlinearity_type, inplace):
|
9 |
+
r"""Return a nonlinearity layer.
|
10 |
+
|
11 |
+
Args:
|
12 |
+
nonlinearity_type (str):
|
13 |
+
Type of nonlinear activation function.
|
14 |
+
``'none'``, ``'relu'``, ``'leakyrelu'``, ``'prelu'``,
|
15 |
+
``'tanh'`` , ``'sigmoid'`` or ``'softmax'``.
|
16 |
+
inplace (bool): If ``True``, set ``inplace=True`` when initializing
|
17 |
+
the nonlinearity layer.
|
18 |
+
"""
|
19 |
+
if nonlinearity_type == 'relu':
|
20 |
+
nonlinearity = nn.ReLU(inplace=inplace)
|
21 |
+
elif nonlinearity_type == 'leakyrelu':
|
22 |
+
nonlinearity = nn.LeakyReLU(0.2, inplace=inplace)
|
23 |
+
elif nonlinearity_type == 'prelu':
|
24 |
+
nonlinearity = nn.PReLU()
|
25 |
+
elif nonlinearity_type == 'tanh':
|
26 |
+
nonlinearity = nn.Tanh()
|
27 |
+
elif nonlinearity_type == 'sigmoid':
|
28 |
+
nonlinearity = nn.Sigmoid()
|
29 |
+
elif nonlinearity_type.startswith('softmax'):
|
30 |
+
dim = nonlinearity_type.split(',')[1] if ',' in nonlinearity_type else 1
|
31 |
+
nonlinearity = nn.Softmax(dim=int(dim))
|
32 |
+
elif nonlinearity_type == 'none' or nonlinearity_type == '':
|
33 |
+
nonlinearity = None
|
34 |
+
else:
|
35 |
+
raise ValueError('Nonlinearity %s is not recognized' %
|
36 |
+
nonlinearity_type)
|
37 |
+
return nonlinearity
|
models/layers/residual.py
ADDED
@@ -0,0 +1,1235 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (C) 2020 NVIDIA Corporation. All rights reserved.
|
2 |
+
#
|
3 |
+
# This work is made available under the Nvidia Source Code License-NC.
|
4 |
+
# To view a copy of this license, check out LICENSE.md
|
5 |
+
import functools
|
6 |
+
|
7 |
+
from torch import nn
|
8 |
+
from torch.nn import Upsample as NearestUpsample
|
9 |
+
from torch.utils.checkpoint import checkpoint
|
10 |
+
|
11 |
+
from .conv import (Conv1dBlock, Conv2dBlock, Conv3dBlock, HyperConv2dBlock,
|
12 |
+
LinearBlock, MultiOutConv2dBlock, PartialConv2dBlock,
|
13 |
+
PartialConv3dBlock)
|
14 |
+
|
15 |
+
|
16 |
+
class _BaseResBlock(nn.Module):
|
17 |
+
r"""An abstract class for residual blocks.
|
18 |
+
"""
|
19 |
+
|
20 |
+
def __init__(self, in_channels, out_channels, kernel_size,
|
21 |
+
padding, dilation, groups, bias, padding_mode,
|
22 |
+
weight_norm_type, weight_norm_params,
|
23 |
+
activation_norm_type, activation_norm_params,
|
24 |
+
skip_activation_norm, skip_nonlinearity,
|
25 |
+
nonlinearity, inplace_nonlinearity, apply_noise,
|
26 |
+
hidden_channels_equal_out_channels,
|
27 |
+
order, block, learn_shortcut):
|
28 |
+
super().__init__()
|
29 |
+
if order == 'pre_act':
|
30 |
+
order = 'NACNAC'
|
31 |
+
if isinstance(bias, bool):
|
32 |
+
# The bias for conv_block_0, conv_block_1, and conv_block_s.
|
33 |
+
biases = [bias, bias, bias]
|
34 |
+
elif isinstance(bias, list):
|
35 |
+
if len(bias) == 3:
|
36 |
+
biases = bias
|
37 |
+
else:
|
38 |
+
raise ValueError('Bias list must be 3.')
|
39 |
+
else:
|
40 |
+
raise ValueError('Bias must be either an integer or s list.')
|
41 |
+
self.learn_shortcut = (in_channels != out_channels) or learn_shortcut
|
42 |
+
if len(order) > 6 or len(order) < 5:
|
43 |
+
raise ValueError('order must be either 5 or 6 characters')
|
44 |
+
if hidden_channels_equal_out_channels:
|
45 |
+
hidden_channels = out_channels
|
46 |
+
else:
|
47 |
+
hidden_channels = min(in_channels, out_channels)
|
48 |
+
|
49 |
+
# Parameters that are specific for convolutions.
|
50 |
+
conv_main_params = {}
|
51 |
+
conv_skip_params = {}
|
52 |
+
if block != LinearBlock:
|
53 |
+
conv_base_params = dict(stride=1, dilation=dilation,
|
54 |
+
groups=groups, padding_mode=padding_mode)
|
55 |
+
conv_main_params.update(conv_base_params)
|
56 |
+
conv_main_params.update(
|
57 |
+
dict(kernel_size=kernel_size,
|
58 |
+
activation_norm_type=activation_norm_type,
|
59 |
+
activation_norm_params=activation_norm_params,
|
60 |
+
padding=padding))
|
61 |
+
conv_skip_params.update(conv_base_params)
|
62 |
+
conv_skip_params.update(dict(kernel_size=1))
|
63 |
+
if skip_activation_norm:
|
64 |
+
conv_skip_params.update(
|
65 |
+
dict(activation_norm_type=activation_norm_type,
|
66 |
+
activation_norm_params=activation_norm_params))
|
67 |
+
|
68 |
+
# Other parameters.
|
69 |
+
other_params = dict(weight_norm_type=weight_norm_type,
|
70 |
+
weight_norm_params=weight_norm_params,
|
71 |
+
apply_noise=apply_noise)
|
72 |
+
|
73 |
+
# Residual branch.
|
74 |
+
if order.find('A') < order.find('C') and \
|
75 |
+
(activation_norm_type == '' or activation_norm_type == 'none'):
|
76 |
+
# Nonlinearity is the first operation in the residual path.
|
77 |
+
# In-place nonlinearity will modify the input variable and cause
|
78 |
+
# backward error.
|
79 |
+
first_inplace = False
|
80 |
+
else:
|
81 |
+
first_inplace = inplace_nonlinearity
|
82 |
+
self.conv_block_0 = block(in_channels, hidden_channels,
|
83 |
+
bias=biases[0],
|
84 |
+
nonlinearity=nonlinearity,
|
85 |
+
order=order[0:3],
|
86 |
+
inplace_nonlinearity=first_inplace,
|
87 |
+
**conv_main_params,
|
88 |
+
**other_params)
|
89 |
+
self.conv_block_1 = block(hidden_channels, out_channels,
|
90 |
+
bias=biases[1],
|
91 |
+
nonlinearity=nonlinearity,
|
92 |
+
order=order[3:],
|
93 |
+
inplace_nonlinearity=inplace_nonlinearity,
|
94 |
+
**conv_main_params,
|
95 |
+
**other_params)
|
96 |
+
|
97 |
+
# Shortcut branch.
|
98 |
+
if self.learn_shortcut:
|
99 |
+
if skip_nonlinearity:
|
100 |
+
skip_nonlinearity_type = nonlinearity
|
101 |
+
else:
|
102 |
+
skip_nonlinearity_type = ''
|
103 |
+
self.conv_block_s = block(in_channels, out_channels,
|
104 |
+
bias=biases[2],
|
105 |
+
nonlinearity=skip_nonlinearity_type,
|
106 |
+
order=order[0:3],
|
107 |
+
**conv_skip_params,
|
108 |
+
**other_params)
|
109 |
+
|
110 |
+
# Whether this block expects conditional inputs.
|
111 |
+
self.conditional = \
|
112 |
+
getattr(self.conv_block_0, 'conditional', False) or \
|
113 |
+
getattr(self.conv_block_1, 'conditional', False)
|
114 |
+
|
115 |
+
def conv_blocks(self, x, *cond_inputs, **kw_cond_inputs):
|
116 |
+
r"""Returns the output of the residual branch.
|
117 |
+
|
118 |
+
Args:
|
119 |
+
x (tensor): Input tensor.
|
120 |
+
cond_inputs (list of tensors) : Conditional input tensors.
|
121 |
+
kw_cond_inputs (dict) : Keyword conditional inputs.
|
122 |
+
Returns:
|
123 |
+
dx (tensor): Output tensor.
|
124 |
+
"""
|
125 |
+
dx = self.conv_block_0(x, *cond_inputs, **kw_cond_inputs)
|
126 |
+
dx = self.conv_block_1(dx, *cond_inputs, **kw_cond_inputs)
|
127 |
+
return dx
|
128 |
+
|
129 |
+
def forward(self, x, *cond_inputs, do_checkpoint=False, **kw_cond_inputs):
|
130 |
+
r"""
|
131 |
+
|
132 |
+
Args:
|
133 |
+
x (tensor): Input tensor.
|
134 |
+
cond_inputs (list of tensors) : Conditional input tensors.
|
135 |
+
do_checkpoint (bool, optional, default=``False``) If ``True``,
|
136 |
+
trade compute for memory by checkpointing the model.
|
137 |
+
kw_cond_inputs (dict) : Keyword conditional inputs.
|
138 |
+
Returns:
|
139 |
+
output (tensor): Output tensor.
|
140 |
+
"""
|
141 |
+
if do_checkpoint:
|
142 |
+
dx = checkpoint(self.conv_blocks, x, *cond_inputs, **kw_cond_inputs)
|
143 |
+
else:
|
144 |
+
dx = self.conv_blocks(x, *cond_inputs, **kw_cond_inputs)
|
145 |
+
|
146 |
+
if self.learn_shortcut:
|
147 |
+
x_shortcut = self.conv_block_s(x, *cond_inputs, **kw_cond_inputs)
|
148 |
+
else:
|
149 |
+
x_shortcut = x
|
150 |
+
output = x_shortcut + dx
|
151 |
+
return output
|
152 |
+
|
153 |
+
|
154 |
+
class ResLinearBlock(_BaseResBlock):
|
155 |
+
r"""Residual block with full-connected layers.
|
156 |
+
|
157 |
+
Args:
|
158 |
+
in_channels (int) : Number of channels in the input tensor.
|
159 |
+
out_channels (int) : Number of channels in the output tensor.
|
160 |
+
weight_norm_type (str, optional, default='none'):
|
161 |
+
Type of weight normalization.
|
162 |
+
``'none'``, ``'spectral'``, ``'weight'``
|
163 |
+
or ``'weight_demod'``.
|
164 |
+
weight_norm_params (obj, optional, default=None):
|
165 |
+
Parameters of weight normalization.
|
166 |
+
If not ``None``, ``weight_norm_params.__dict__`` will be used as
|
167 |
+
keyword arguments when initializing weight normalization.
|
168 |
+
activation_norm_type (str, optional, default='none'):
|
169 |
+
Type of activation normalization.
|
170 |
+
``'none'``, ``'instance'``, ``'batch'``, ``'sync_batch'``,
|
171 |
+
``'layer'``, ``'layer_2d'``, ``'group'``, ``'adaptive'``,
|
172 |
+
``'spatially_adaptive'`` or ``'hyper_spatially_adaptive'``.
|
173 |
+
activation_norm_params (obj, optional, default=None):
|
174 |
+
Parameters of activation normalization.
|
175 |
+
If not ``None``, ``activation_norm_params.__dict__`` will be used as
|
176 |
+
keyword arguments when initializing activation normalization.
|
177 |
+
skip_activation_norm (bool, optional, default=True): If ``True`` and
|
178 |
+
``learn_shortcut`` is also ``True``, applies activation norm to the
|
179 |
+
learned shortcut connection.
|
180 |
+
skip_nonlinearity (bool, optional, default=True): If ``True`` and
|
181 |
+
``learn_shortcut`` is also ``True``, applies nonlinearity to the
|
182 |
+
learned shortcut connection.
|
183 |
+
nonlinearity (str, optional, default='none'):
|
184 |
+
Type of nonlinear activation function in the residual link.
|
185 |
+
``'none'``, ``'relu'``, ``'leakyrelu'``, ``'prelu'``,
|
186 |
+
``'tanh'`` , ``'sigmoid'`` or ``'softmax'``.
|
187 |
+
inplace_nonlinearity (bool, optional, default=False): If ``True``,
|
188 |
+
set ``inplace=True`` when initializing the nonlinearity layers.
|
189 |
+
apply_noise (bool, optional, default=False): If ``True``, add
|
190 |
+
Gaussian noise with learnable magnitude after the
|
191 |
+
fully-connected layer.
|
192 |
+
hidden_channels_equal_out_channels (bool, optional, default=False):
|
193 |
+
If ``True``, set the hidden channel number to be equal to the
|
194 |
+
output channel number. If ``False``, the hidden channel number
|
195 |
+
equals to the smaller of the input channel number and the
|
196 |
+
output channel number.
|
197 |
+
order (str, optional, default='CNACNA'): Order of operations
|
198 |
+
in the residual link.
|
199 |
+
``'C'``: fully-connected,
|
200 |
+
``'N'``: normalization,
|
201 |
+
``'A'``: nonlinear activation.
|
202 |
+
learn_shortcut (bool, optional, default=False): If ``True``, always use
|
203 |
+
a convolutional shortcut instead of an identity one, otherwise only
|
204 |
+
use a convolutional one if input and output have different number of
|
205 |
+
channels.
|
206 |
+
"""
|
207 |
+
|
208 |
+
def __init__(self, in_channels, out_channels, bias=True,
|
209 |
+
weight_norm_type='none', weight_norm_params=None,
|
210 |
+
activation_norm_type='none', activation_norm_params=None,
|
211 |
+
skip_activation_norm=True, skip_nonlinearity=False,
|
212 |
+
nonlinearity='leakyrelu', inplace_nonlinearity=False,
|
213 |
+
apply_noise=False, hidden_channels_equal_out_channels=False,
|
214 |
+
order='CNACNA', learn_shortcut=False):
|
215 |
+
super().__init__(in_channels, out_channels, None, None,
|
216 |
+
None, None, bias, None,
|
217 |
+
weight_norm_type, weight_norm_params,
|
218 |
+
activation_norm_type, activation_norm_params,
|
219 |
+
skip_activation_norm, skip_nonlinearity,
|
220 |
+
nonlinearity, inplace_nonlinearity,
|
221 |
+
apply_noise, hidden_channels_equal_out_channels,
|
222 |
+
order, LinearBlock, learn_shortcut)
|
223 |
+
|
224 |
+
|
225 |
+
class Res1dBlock(_BaseResBlock):
|
226 |
+
r"""Residual block for 1D input.
|
227 |
+
|
228 |
+
Args:
|
229 |
+
in_channels (int) : Number of channels in the input tensor.
|
230 |
+
out_channels (int) : Number of channels in the output tensor.
|
231 |
+
kernel_size (int, optional, default=3): Kernel size for the
|
232 |
+
convolutional filters in the residual link.
|
233 |
+
padding (int, optional, default=1): Padding size.
|
234 |
+
dilation (int, optional, default=1): Dilation factor.
|
235 |
+
groups (int, optional, default=1): Number of convolutional/linear
|
236 |
+
groups.
|
237 |
+
padding_mode (string, optional, default='zeros'): Type of padding:
|
238 |
+
``'zeros'``, ``'reflect'``, ``'replicate'`` or ``'circular'``.
|
239 |
+
weight_norm_type (str, optional, default='none'):
|
240 |
+
Type of weight normalization.
|
241 |
+
``'none'``, ``'spectral'``, ``'weight'``
|
242 |
+
or ``'weight_demod'``.
|
243 |
+
weight_norm_params (obj, optional, default=None):
|
244 |
+
Parameters of weight normalization.
|
245 |
+
If not ``None``, ``weight_norm_params.__dict__`` will be used as
|
246 |
+
keyword arguments when initializing weight normalization.
|
247 |
+
activation_norm_type (str, optional, default='none'):
|
248 |
+
Type of activation normalization.
|
249 |
+
``'none'``, ``'instance'``, ``'batch'``, ``'sync_batch'``,
|
250 |
+
``'layer'``, ``'layer_2d'``, ``'group'``, ``'adaptive'``,
|
251 |
+
``'spatially_adaptive'`` or ``'hyper_spatially_adaptive'``.
|
252 |
+
activation_norm_params (obj, optional, default=None):
|
253 |
+
Parameters of activation normalization.
|
254 |
+
If not ``None``, ``activation_norm_params.__dict__`` will be used as
|
255 |
+
keyword arguments when initializing activation normalization.
|
256 |
+
skip_activation_norm (bool, optional, default=True): If ``True`` and
|
257 |
+
``learn_shortcut`` is also ``True``, applies activation norm to the
|
258 |
+
learned shortcut connection.
|
259 |
+
skip_nonlinearity (bool, optional, default=True): If ``True`` and
|
260 |
+
``learn_shortcut`` is also ``True``, applies nonlinearity to the
|
261 |
+
learned shortcut connection.
|
262 |
+
nonlinearity (str, optional, default='none'):
|
263 |
+
Type of nonlinear activation function in the residual link.
|
264 |
+
``'none'``, ``'relu'``, ``'leakyrelu'``, ``'prelu'``,
|
265 |
+
``'tanh'`` , ``'sigmoid'`` or ``'softmax'``.
|
266 |
+
inplace_nonlinearity (bool, optional, default=False): If ``True``,
|
267 |
+
set ``inplace=True`` when initializing the nonlinearity layers.
|
268 |
+
apply_noise (bool, optional, default=False): If ``True``, adds
|
269 |
+
Gaussian noise with learnable magnitude to the convolution output.
|
270 |
+
hidden_channels_equal_out_channels (bool, optional, default=False):
|
271 |
+
If ``True``, set the hidden channel number to be equal to the
|
272 |
+
output channel number. If ``False``, the hidden channel number
|
273 |
+
equals to the smaller of the input channel number and the
|
274 |
+
output channel number.
|
275 |
+
order (str, optional, default='CNACNA'): Order of operations
|
276 |
+
in the residual link.
|
277 |
+
``'C'``: convolution,
|
278 |
+
``'N'``: normalization,
|
279 |
+
``'A'``: nonlinear activation.
|
280 |
+
learn_shortcut (bool, optional, default=False): If ``True``, always use
|
281 |
+
a convolutional shortcut instead of an identity one, otherwise only
|
282 |
+
use a convolutional one if input and output have different number of
|
283 |
+
channels.
|
284 |
+
"""
|
285 |
+
|
286 |
+
def __init__(self, in_channels, out_channels, kernel_size=3,
|
287 |
+
padding=1, dilation=1, groups=1, bias=True,
|
288 |
+
padding_mode='zeros',
|
289 |
+
weight_norm_type='none', weight_norm_params=None,
|
290 |
+
activation_norm_type='none', activation_norm_params=None,
|
291 |
+
skip_activation_norm=True, skip_nonlinearity=False,
|
292 |
+
nonlinearity='leakyrelu', inplace_nonlinearity=False,
|
293 |
+
apply_noise=False, hidden_channels_equal_out_channels=False,
|
294 |
+
order='CNACNA', learn_shortcut=False):
|
295 |
+
super().__init__(in_channels, out_channels, kernel_size, padding,
|
296 |
+
dilation, groups, bias, padding_mode,
|
297 |
+
weight_norm_type, weight_norm_params,
|
298 |
+
activation_norm_type, activation_norm_params,
|
299 |
+
skip_activation_norm, skip_nonlinearity,
|
300 |
+
nonlinearity, inplace_nonlinearity, apply_noise,
|
301 |
+
hidden_channels_equal_out_channels,
|
302 |
+
order, Conv1dBlock, learn_shortcut)
|
303 |
+
|
304 |
+
|
305 |
+
class Res2dBlock(_BaseResBlock):
|
306 |
+
r"""Residual block for 2D input.
|
307 |
+
|
308 |
+
Args:
|
309 |
+
in_channels (int) : Number of channels in the input tensor.
|
310 |
+
out_channels (int) : Number of channels in the output tensor.
|
311 |
+
kernel_size (int, optional, default=3): Kernel size for the
|
312 |
+
convolutional filters in the residual link.
|
313 |
+
padding (int, optional, default=1): Padding size.
|
314 |
+
dilation (int, optional, default=1): Dilation factor.
|
315 |
+
groups (int, optional, default=1): Number of convolutional/linear
|
316 |
+
groups.
|
317 |
+
padding_mode (string, optional, default='zeros'): Type of padding:
|
318 |
+
``'zeros'``, ``'reflect'``, ``'replicate'`` or ``'circular'``.
|
319 |
+
weight_norm_type (str, optional, default='none'):
|
320 |
+
Type of weight normalization.
|
321 |
+
``'none'``, ``'spectral'``, ``'weight'``
|
322 |
+
or ``'weight_demod'``.
|
323 |
+
weight_norm_params (obj, optional, default=None):
|
324 |
+
Parameters of weight normalization.
|
325 |
+
If not ``None``, ``weight_norm_params.__dict__`` will be used as
|
326 |
+
keyword arguments when initializing weight normalization.
|
327 |
+
activation_norm_type (str, optional, default='none'):
|
328 |
+
Type of activation normalization.
|
329 |
+
``'none'``, ``'instance'``, ``'batch'``, ``'sync_batch'``,
|
330 |
+
``'layer'``, ``'layer_2d'``, ``'group'``, ``'adaptive'``,
|
331 |
+
``'spatially_adaptive'`` or ``'hyper_spatially_adaptive'``.
|
332 |
+
activation_norm_params (obj, optional, default=None):
|
333 |
+
Parameters of activation normalization.
|
334 |
+
If not ``None``, ``activation_norm_params.__dict__`` will be used as
|
335 |
+
keyword arguments when initializing activation normalization.
|
336 |
+
skip_activation_norm (bool, optional, default=True): If ``True`` and
|
337 |
+
``learn_shortcut`` is also ``True``, applies activation norm to the
|
338 |
+
learned shortcut connection.
|
339 |
+
skip_nonlinearity (bool, optional, default=True): If ``True`` and
|
340 |
+
``learn_shortcut`` is also ``True``, applies nonlinearity to the
|
341 |
+
learned shortcut connection.
|
342 |
+
nonlinearity (str, optional, default='none'):
|
343 |
+
Type of nonlinear activation function in the residual link.
|
344 |
+
``'none'``, ``'relu'``, ``'leakyrelu'``, ``'prelu'``,
|
345 |
+
``'tanh'`` , ``'sigmoid'`` or ``'softmax'``.
|
346 |
+
inplace_nonlinearity (bool, optional, default=False): If ``True``,
|
347 |
+
set ``inplace=True`` when initializing the nonlinearity layers.
|
348 |
+
apply_noise (bool, optional, default=False): If ``True``, adds
|
349 |
+
Gaussian noise with learnable magnitude to the convolution output.
|
350 |
+
hidden_channels_equal_out_channels (bool, optional, default=False):
|
351 |
+
If ``True``, set the hidden channel number to be equal to the
|
352 |
+
output channel number. If ``False``, the hidden channel number
|
353 |
+
equals to the smaller of the input channel number and the
|
354 |
+
output channel number.
|
355 |
+
order (str, optional, default='CNACNA'): Order of operations
|
356 |
+
in the residual link.
|
357 |
+
``'C'``: convolution,
|
358 |
+
``'N'``: normalization,
|
359 |
+
``'A'``: nonlinear activation.
|
360 |
+
learn_shortcut (bool, optional, default=False): If ``True``, always use
|
361 |
+
a convolutional shortcut instead of an identity one, otherwise only
|
362 |
+
use a convolutional one if input and output have different number of
|
363 |
+
channels.
|
364 |
+
"""
|
365 |
+
|
366 |
+
def __init__(self, in_channels, out_channels, kernel_size=3,
|
367 |
+
padding=1, dilation=1, groups=1, bias=True,
|
368 |
+
padding_mode='zeros',
|
369 |
+
weight_norm_type='none', weight_norm_params=None,
|
370 |
+
activation_norm_type='none', activation_norm_params=None,
|
371 |
+
skip_activation_norm=True, skip_nonlinearity=False,
|
372 |
+
nonlinearity='leakyrelu', inplace_nonlinearity=False,
|
373 |
+
apply_noise=False, hidden_channels_equal_out_channels=False,
|
374 |
+
order='CNACNA', learn_shortcut=False):
|
375 |
+
super().__init__(in_channels, out_channels, kernel_size, padding,
|
376 |
+
dilation, groups, bias, padding_mode,
|
377 |
+
weight_norm_type, weight_norm_params,
|
378 |
+
activation_norm_type, activation_norm_params,
|
379 |
+
skip_activation_norm, skip_nonlinearity,
|
380 |
+
nonlinearity, inplace_nonlinearity, apply_noise,
|
381 |
+
hidden_channels_equal_out_channels,
|
382 |
+
order, Conv2dBlock, learn_shortcut)
|
383 |
+
|
384 |
+
|
385 |
+
class Res3dBlock(_BaseResBlock):
|
386 |
+
r"""Residual block for 3D input.
|
387 |
+
|
388 |
+
Args:
|
389 |
+
in_channels (int) : Number of channels in the input tensor.
|
390 |
+
out_channels (int) : Number of channels in the output tensor.
|
391 |
+
kernel_size (int, optional, default=3): Kernel size for the
|
392 |
+
convolutional filters in the residual link.
|
393 |
+
padding (int, optional, default=1): Padding size.
|
394 |
+
dilation (int, optional, default=1): Dilation factor.
|
395 |
+
groups (int, optional, default=1): Number of convolutional/linear
|
396 |
+
groups.
|
397 |
+
padding_mode (string, optional, default='zeros'): Type of padding:
|
398 |
+
``'zeros'``, ``'reflect'``, ``'replicate'`` or ``'circular'``.
|
399 |
+
weight_norm_type (str, optional, default='none'):
|
400 |
+
Type of weight normalization.
|
401 |
+
``'none'``, ``'spectral'``, ``'weight'``
|
402 |
+
or ``'weight_demod'``.
|
403 |
+
weight_norm_params (obj, optional, default=None):
|
404 |
+
Parameters of weight normalization.
|
405 |
+
If not ``None``, ``weight_norm_params.__dict__`` will be used as
|
406 |
+
keyword arguments when initializing weight normalization.
|
407 |
+
activation_norm_type (str, optional, default='none'):
|
408 |
+
Type of activation normalization.
|
409 |
+
``'none'``, ``'instance'``, ``'batch'``, ``'sync_batch'``,
|
410 |
+
``'layer'``, ``'layer_2d'``, ``'group'``, ``'adaptive'``,
|
411 |
+
``'spatially_adaptive'`` or ``'hyper_spatially_adaptive'``.
|
412 |
+
activation_norm_params (obj, optional, default=None):
|
413 |
+
Parameters of activation normalization.
|
414 |
+
If not ``None``, ``activation_norm_params.__dict__`` will be used as
|
415 |
+
keyword arguments when initializing activation normalization.
|
416 |
+
skip_activation_norm (bool, optional, default=True): If ``True`` and
|
417 |
+
``learn_shortcut`` is also ``True``, applies activation norm to the
|
418 |
+
learned shortcut connection.
|
419 |
+
skip_nonlinearity (bool, optional, default=True): If ``True`` and
|
420 |
+
``learn_shortcut`` is also ``True``, applies nonlinearity to the
|
421 |
+
learned shortcut connection.
|
422 |
+
nonlinearity (str, optional, default='none'):
|
423 |
+
Type of nonlinear activation function in the residual link.
|
424 |
+
``'none'``, ``'relu'``, ``'leakyrelu'``, ``'prelu'``,
|
425 |
+
``'tanh'`` , ``'sigmoid'`` or ``'softmax'``.
|
426 |
+
inplace_nonlinearity (bool, optional, default=False): If ``True``,
|
427 |
+
set ``inplace=True`` when initializing the nonlinearity layers.
|
428 |
+
apply_noise (bool, optional, default=False): If ``True``, adds
|
429 |
+
Gaussian noise with learnable magnitude to the convolution output.
|
430 |
+
hidden_channels_equal_out_channels (bool, optional, default=False):
|
431 |
+
If ``True``, set the hidden channel number to be equal to the
|
432 |
+
output channel number. If ``False``, the hidden channel number
|
433 |
+
equals to the smaller of the input channel number and the
|
434 |
+
output channel number.
|
435 |
+
order (str, optional, default='CNACNA'): Order of operations
|
436 |
+
in the residual link.
|
437 |
+
``'C'``: convolution,
|
438 |
+
``'N'``: normalization,
|
439 |
+
``'A'``: nonlinear activation.
|
440 |
+
learn_shortcut (bool, optional, default=False): If ``True``, always use
|
441 |
+
a convolutional shortcut instead of an identity one, otherwise only
|
442 |
+
use a convolutional one if input and output have different number of
|
443 |
+
channels.
|
444 |
+
"""
|
445 |
+
|
446 |
+
def __init__(self, in_channels, out_channels, kernel_size=3,
|
447 |
+
padding=1, dilation=1, groups=1, bias=True,
|
448 |
+
padding_mode='zeros',
|
449 |
+
weight_norm_type='none', weight_norm_params=None,
|
450 |
+
activation_norm_type='none', activation_norm_params=None,
|
451 |
+
skip_activation_norm=True, skip_nonlinearity=False,
|
452 |
+
nonlinearity='leakyrelu', inplace_nonlinearity=False,
|
453 |
+
apply_noise=False, hidden_channels_equal_out_channels=False,
|
454 |
+
order='CNACNA', learn_shortcut=False):
|
455 |
+
super().__init__(in_channels, out_channels, kernel_size, padding,
|
456 |
+
dilation, groups, bias, padding_mode,
|
457 |
+
weight_norm_type, weight_norm_params,
|
458 |
+
activation_norm_type, activation_norm_params,
|
459 |
+
skip_activation_norm, skip_nonlinearity,
|
460 |
+
nonlinearity, inplace_nonlinearity, apply_noise,
|
461 |
+
hidden_channels_equal_out_channels,
|
462 |
+
order, Conv3dBlock, learn_shortcut)
|
463 |
+
|
464 |
+
|
465 |
+
class _BaseHyperResBlock(_BaseResBlock):
|
466 |
+
r"""An abstract class for hyper residual blocks.
|
467 |
+
"""
|
468 |
+
|
469 |
+
def __init__(self, in_channels, out_channels, kernel_size,
|
470 |
+
padding, dilation, groups, bias, padding_mode,
|
471 |
+
weight_norm_type, weight_norm_params,
|
472 |
+
activation_norm_type, activation_norm_params,
|
473 |
+
skip_activation_norm, skip_nonlinearity,
|
474 |
+
nonlinearity, inplace_nonlinearity, apply_noise,
|
475 |
+
hidden_channels_equal_out_channels,
|
476 |
+
order,
|
477 |
+
is_hyper_conv, is_hyper_norm, block, learn_shortcut):
|
478 |
+
block = functools.partial(block,
|
479 |
+
is_hyper_conv=is_hyper_conv,
|
480 |
+
is_hyper_norm=is_hyper_norm)
|
481 |
+
super().__init__(in_channels, out_channels, kernel_size, padding,
|
482 |
+
dilation, groups, bias, padding_mode,
|
483 |
+
weight_norm_type, weight_norm_params,
|
484 |
+
activation_norm_type, activation_norm_params,
|
485 |
+
skip_activation_norm, skip_nonlinearity,
|
486 |
+
nonlinearity, inplace_nonlinearity, apply_noise,
|
487 |
+
hidden_channels_equal_out_channels,
|
488 |
+
order, block, learn_shortcut)
|
489 |
+
|
490 |
+
def forward(self, x, *cond_inputs, conv_weights=(None,) * 3,
|
491 |
+
norm_weights=(None,) * 3, **kw_cond_inputs):
|
492 |
+
r"""
|
493 |
+
|
494 |
+
Args:
|
495 |
+
x (tensor): Input tensor.
|
496 |
+
cond_inputs (list of tensors) : Conditional input tensors.
|
497 |
+
conv_weights (list of tensors): Convolution weights for
|
498 |
+
three convolutional layers respectively.
|
499 |
+
norm_weights (list of tensors): Normalization weights for
|
500 |
+
three convolutional layers respectively.
|
501 |
+
kw_cond_inputs (dict) : Keyword conditional inputs.
|
502 |
+
Returns:
|
503 |
+
output (tensor): Output tensor.
|
504 |
+
"""
|
505 |
+
dx = self.conv_block_0(x, *cond_inputs, conv_weights=conv_weights[0],
|
506 |
+
norm_weights=norm_weights[0])
|
507 |
+
dx = self.conv_block_1(dx, *cond_inputs, conv_weights=conv_weights[1],
|
508 |
+
norm_weights=norm_weights[1])
|
509 |
+
if self.learn_shortcut:
|
510 |
+
x_shortcut = self.conv_block_s(x, *cond_inputs,
|
511 |
+
conv_weights=conv_weights[2],
|
512 |
+
norm_weights=norm_weights[2])
|
513 |
+
else:
|
514 |
+
x_shortcut = x
|
515 |
+
output = x_shortcut + dx
|
516 |
+
return output
|
517 |
+
|
518 |
+
|
519 |
+
class HyperRes2dBlock(_BaseHyperResBlock):
|
520 |
+
r"""Hyper residual block for 2D input.
|
521 |
+
|
522 |
+
Args:
|
523 |
+
in_channels (int) : Number of channels in the input tensor.
|
524 |
+
out_channels (int) : Number of channels in the output tensor.
|
525 |
+
kernel_size (int, optional, default=3): Kernel size for the
|
526 |
+
convolutional filters in the residual link.
|
527 |
+
padding (int, optional, default=1): Padding size.
|
528 |
+
dilation (int, optional, default=1): Dilation factor.
|
529 |
+
groups (int, optional, default=1): Number of convolutional/linear
|
530 |
+
groups.
|
531 |
+
padding_mode (string, optional, default='zeros'): Type of padding:
|
532 |
+
``'zeros'``, ``'reflect'``, ``'replicate'`` or ``'circular'``.
|
533 |
+
weight_norm_type (str, optional, default='none'):
|
534 |
+
Type of weight normalization.
|
535 |
+
``'none'``, ``'spectral'``, ``'weight'``
|
536 |
+
or ``'weight_demod'``.
|
537 |
+
weight_norm_params (obj, optional, default=None):
|
538 |
+
Parameters of weight normalization.
|
539 |
+
If not ``None``, ``weight_norm_params.__dict__`` will be used as
|
540 |
+
keyword arguments when initializing weight normalization.
|
541 |
+
activation_norm_type (str, optional, default='none'):
|
542 |
+
Type of activation normalization.
|
543 |
+
``'none'``, ``'instance'``, ``'batch'``, ``'sync_batch'``,
|
544 |
+
``'layer'``, ``'layer_2d'``, ``'group'``, ``'adaptive'``,
|
545 |
+
``'spatially_adaptive'`` or ``'hyper_spatially_adaptive'``.
|
546 |
+
activation_norm_params (obj, optional, default=None):
|
547 |
+
Parameters of activation normalization.
|
548 |
+
If not ``None``, ``activation_norm_params.__dict__`` will be used as
|
549 |
+
keyword arguments when initializing activation normalization.
|
550 |
+
skip_activation_norm (bool, optional, default=True): If ``True`` and
|
551 |
+
``learn_shortcut`` is also ``True``, applies activation norm to the
|
552 |
+
learned shortcut connection.
|
553 |
+
skip_nonlinearity (bool, optional, default=True): If ``True`` and
|
554 |
+
``learn_shortcut`` is also ``True``, applies nonlinearity to the
|
555 |
+
learned shortcut connection.
|
556 |
+
nonlinearity (str, optional, default='none'):
|
557 |
+
Type of nonlinear activation function in the residual link.
|
558 |
+
``'none'``, ``'relu'``, ``'leakyrelu'``, ``'prelu'``,
|
559 |
+
``'tanh'`` , ``'sigmoid'`` or ``'softmax'``.
|
560 |
+
inplace_nonlinearity (bool, optional, default=False): If ``True``,
|
561 |
+
set ``inplace=True`` when initializing the nonlinearity layers.
|
562 |
+
apply_noise (bool, optional, default=False): If ``True``, adds
|
563 |
+
Gaussian noise with learnable magnitude to the convolution output.
|
564 |
+
hidden_channels_equal_out_channels (bool, optional, default=False):
|
565 |
+
If ``True``, set the hidden channel number to be equal to the
|
566 |
+
output channel number. If ``False``, the hidden channel number
|
567 |
+
equals to the smaller of the input channel number and the
|
568 |
+
output channel number.
|
569 |
+
order (str, optional, default='CNACNA'): Order of operations
|
570 |
+
in the residual link.
|
571 |
+
``'C'``: convolution,
|
572 |
+
``'N'``: normalization,
|
573 |
+
``'A'``: nonlinear activation.
|
574 |
+
is_hyper_conv (bool, optional, default=False): If ``True``, use
|
575 |
+
``HyperConv2d``, otherwise use ``torch.nn.Conv2d``.
|
576 |
+
is_hyper_norm (bool, optional, default=False): If ``True``, use
|
577 |
+
hyper normalizations.
|
578 |
+
learn_shortcut (bool, optional, default=False): If ``True``, always use
|
579 |
+
a convolutional shortcut instead of an identity one, otherwise only
|
580 |
+
use a convolutional one if input and output have different number of
|
581 |
+
channels.
|
582 |
+
"""
|
583 |
+
|
584 |
+
def __init__(self, in_channels, out_channels, kernel_size=3,
|
585 |
+
padding=1, dilation=1, groups=1, bias=True,
|
586 |
+
padding_mode='zeros',
|
587 |
+
weight_norm_type='', weight_norm_params=None,
|
588 |
+
activation_norm_type='', activation_norm_params=None,
|
589 |
+
skip_activation_norm=True, skip_nonlinearity=False,
|
590 |
+
nonlinearity='leakyrelu', inplace_nonlinearity=False,
|
591 |
+
apply_noise=False, hidden_channels_equal_out_channels=False,
|
592 |
+
order='CNACNA', is_hyper_conv=False, is_hyper_norm=False,
|
593 |
+
learn_shortcut=False):
|
594 |
+
super().__init__(in_channels, out_channels, kernel_size, padding,
|
595 |
+
dilation, groups, bias, padding_mode,
|
596 |
+
weight_norm_type, weight_norm_params,
|
597 |
+
activation_norm_type, activation_norm_params,
|
598 |
+
skip_activation_norm, skip_nonlinearity,
|
599 |
+
nonlinearity, inplace_nonlinearity, apply_noise,
|
600 |
+
hidden_channels_equal_out_channels,
|
601 |
+
order, is_hyper_conv, is_hyper_norm,
|
602 |
+
HyperConv2dBlock, learn_shortcut)
|
603 |
+
|
604 |
+
|
605 |
+
class _BaseDownResBlock(_BaseResBlock):
|
606 |
+
r"""An abstract class for residual blocks with downsampling.
|
607 |
+
"""
|
608 |
+
|
609 |
+
def __init__(self, in_channels, out_channels, kernel_size,
|
610 |
+
padding, dilation, groups, bias, padding_mode,
|
611 |
+
weight_norm_type, weight_norm_params,
|
612 |
+
activation_norm_type, activation_norm_params,
|
613 |
+
skip_activation_norm, skip_nonlinearity,
|
614 |
+
nonlinearity, inplace_nonlinearity,
|
615 |
+
apply_noise, hidden_channels_equal_out_channels,
|
616 |
+
order, block, pooling, down_factor, learn_shortcut):
|
617 |
+
super().__init__(in_channels, out_channels, kernel_size, padding,
|
618 |
+
dilation, groups, bias, padding_mode,
|
619 |
+
weight_norm_type, weight_norm_params,
|
620 |
+
activation_norm_type, activation_norm_params,
|
621 |
+
skip_activation_norm, skip_nonlinearity,
|
622 |
+
nonlinearity, inplace_nonlinearity,
|
623 |
+
apply_noise, hidden_channels_equal_out_channels,
|
624 |
+
order, block, learn_shortcut)
|
625 |
+
self.pooling = pooling(down_factor)
|
626 |
+
|
627 |
+
def forward(self, x, *cond_inputs):
|
628 |
+
r"""
|
629 |
+
|
630 |
+
Args:
|
631 |
+
x (tensor) : Input tensor.
|
632 |
+
cond_inputs (list of tensors) : conditional input.
|
633 |
+
Returns:
|
634 |
+
output (tensor) : Output tensor.
|
635 |
+
"""
|
636 |
+
dx = self.conv_block_0(x, *cond_inputs)
|
637 |
+
dx = self.conv_block_1(dx, *cond_inputs)
|
638 |
+
dx = self.pooling(dx)
|
639 |
+
if self.learn_shortcut:
|
640 |
+
x_shortcut = self.conv_block_s(x, *cond_inputs)
|
641 |
+
else:
|
642 |
+
x_shortcut = x
|
643 |
+
x_shortcut = self.pooling(x_shortcut)
|
644 |
+
output = x_shortcut + dx
|
645 |
+
return output
|
646 |
+
|
647 |
+
|
648 |
+
class DownRes2dBlock(_BaseDownResBlock):
|
649 |
+
r"""Residual block for 2D input with downsampling.
|
650 |
+
|
651 |
+
Args:
|
652 |
+
in_channels (int) : Number of channels in the input tensor.
|
653 |
+
out_channels (int) : Number of channels in the output tensor.
|
654 |
+
kernel_size (int, optional, default=3): Kernel size for the
|
655 |
+
convolutional filters in the residual link.
|
656 |
+
padding (int, optional, default=1): Padding size.
|
657 |
+
dilation (int, optional, default=1): Dilation factor.
|
658 |
+
groups (int, optional, default=1): Number of convolutional/linear
|
659 |
+
groups.
|
660 |
+
padding_mode (string, optional, default='zeros'): Type of padding:
|
661 |
+
``'zeros'``, ``'reflect'``, ``'replicate'`` or ``'circular'``.
|
662 |
+
weight_norm_type (str, optional, default='none'):
|
663 |
+
Type of weight normalization.
|
664 |
+
``'none'``, ``'spectral'``, ``'weight'``
|
665 |
+
or ``'weight_demod'``.
|
666 |
+
weight_norm_params (obj, optional, default=None):
|
667 |
+
Parameters of weight normalization.
|
668 |
+
If not ``None``, ``weight_norm_params.__dict__`` will be used as
|
669 |
+
keyword arguments when initializing weight normalization.
|
670 |
+
activation_norm_type (str, optional, default='none'):
|
671 |
+
Type of activation normalization.
|
672 |
+
``'none'``, ``'instance'``, ``'batch'``, ``'sync_batch'``,
|
673 |
+
``'layer'``, ``'layer_2d'``, ``'group'``, ``'adaptive'``,
|
674 |
+
``'spatially_adaptive'`` or ``'hyper_spatially_adaptive'``.
|
675 |
+
activation_norm_params (obj, optional, default=None):
|
676 |
+
Parameters of activation normalization.
|
677 |
+
If not ``None``, ``activation_norm_params.__dict__`` will be used as
|
678 |
+
keyword arguments when initializing activation normalization.
|
679 |
+
skip_activation_norm (bool, optional, default=True): If ``True`` and
|
680 |
+
``learn_shortcut`` is also ``True``, applies activation norm to the
|
681 |
+
learned shortcut connection.
|
682 |
+
skip_nonlinearity (bool, optional, default=True): If ``True`` and
|
683 |
+
``learn_shortcut`` is also ``True``, applies nonlinearity to the
|
684 |
+
learned shortcut connection.
|
685 |
+
nonlinearity (str, optional, default='none'):
|
686 |
+
Type of nonlinear activation function in the residual link.
|
687 |
+
``'none'``, ``'relu'``, ``'leakyrelu'``, ``'prelu'``,
|
688 |
+
``'tanh'`` , ``'sigmoid'`` or ``'softmax'``.
|
689 |
+
inplace_nonlinearity (bool, optional, default=False): If ``True``,
|
690 |
+
set ``inplace=True`` when initializing the nonlinearity layers.
|
691 |
+
apply_noise (bool, optional, default=False): If ``True``, adds
|
692 |
+
Gaussian noise with learnable magnitude to the convolution output.
|
693 |
+
hidden_channels_equal_out_channels (bool, optional, default=False):
|
694 |
+
If ``True``, set the hidden channel number to be equal to the
|
695 |
+
output channel number. If ``False``, the hidden channel number
|
696 |
+
equals to the smaller of the input channel number and the
|
697 |
+
output channel number.
|
698 |
+
order (str, optional, default='CNACNA'): Order of operations
|
699 |
+
in the residual link.
|
700 |
+
``'C'``: convolution,
|
701 |
+
``'N'``: normalization,
|
702 |
+
``'A'``: nonlinear activation.
|
703 |
+
pooling (class, optional, default=nn.AvgPool2d): Pytorch pooling
|
704 |
+
layer to be used.
|
705 |
+
down_factor (int, optional, default=2): Downsampling factor.
|
706 |
+
learn_shortcut (bool, optional, default=False): If ``True``, always use
|
707 |
+
a convolutional shortcut instead of an identity one, otherwise only
|
708 |
+
use a convolutional one if input and output have different number of
|
709 |
+
channels.
|
710 |
+
"""
|
711 |
+
|
712 |
+
def __init__(self, in_channels, out_channels, kernel_size=3,
|
713 |
+
padding=1, dilation=1, groups=1, bias=True,
|
714 |
+
padding_mode='zeros',
|
715 |
+
weight_norm_type='none', weight_norm_params=None,
|
716 |
+
activation_norm_type='none', activation_norm_params=None,
|
717 |
+
skip_activation_norm=True, skip_nonlinearity=False,
|
718 |
+
nonlinearity='leakyrelu', inplace_nonlinearity=False,
|
719 |
+
apply_noise=False, hidden_channels_equal_out_channels=False,
|
720 |
+
order='CNACNA', pooling=nn.AvgPool2d, down_factor=2,
|
721 |
+
learn_shortcut=False):
|
722 |
+
super().__init__(in_channels, out_channels, kernel_size, padding,
|
723 |
+
dilation, groups, bias, padding_mode,
|
724 |
+
weight_norm_type, weight_norm_params,
|
725 |
+
activation_norm_type, activation_norm_params,
|
726 |
+
skip_activation_norm, skip_nonlinearity,
|
727 |
+
nonlinearity, inplace_nonlinearity, apply_noise,
|
728 |
+
hidden_channels_equal_out_channels,
|
729 |
+
order, Conv2dBlock, pooling,
|
730 |
+
down_factor, learn_shortcut)
|
731 |
+
|
732 |
+
|
733 |
+
class _BaseUpResBlock(_BaseResBlock):
|
734 |
+
r"""An abstract class for residual blocks with upsampling.
|
735 |
+
"""
|
736 |
+
|
737 |
+
def __init__(self, in_channels, out_channels, kernel_size,
|
738 |
+
padding, dilation, groups, bias, padding_mode,
|
739 |
+
weight_norm_type, weight_norm_params,
|
740 |
+
activation_norm_type, activation_norm_params,
|
741 |
+
skip_activation_norm, skip_nonlinearity,
|
742 |
+
nonlinearity, inplace_nonlinearity,
|
743 |
+
apply_noise, hidden_channels_equal_out_channels,
|
744 |
+
order, block, upsample, up_factor, learn_shortcut):
|
745 |
+
super().__init__(in_channels, out_channels, kernel_size, padding,
|
746 |
+
dilation, groups, bias, padding_mode,
|
747 |
+
weight_norm_type, weight_norm_params,
|
748 |
+
activation_norm_type, activation_norm_params,
|
749 |
+
skip_activation_norm, skip_nonlinearity,
|
750 |
+
nonlinearity, inplace_nonlinearity,
|
751 |
+
apply_noise, hidden_channels_equal_out_channels,
|
752 |
+
order, block, learn_shortcut)
|
753 |
+
self.order = order
|
754 |
+
self.upsample = upsample(scale_factor=up_factor)
|
755 |
+
|
756 |
+
def forward(self, x, *cond_inputs):
|
757 |
+
r"""Implementation of the up residual block forward function.
|
758 |
+
If the order is 'NAC' for the first residual block, we will first
|
759 |
+
do the activation norm and nonlinearity, in the original resolution.
|
760 |
+
We will then upsample the activation map to a higher resolution. We
|
761 |
+
then do the convolution.
|
762 |
+
It is is other orders, then we first do the whole processing and
|
763 |
+
then upsample.
|
764 |
+
|
765 |
+
Args:
|
766 |
+
x (tensor) : Input tensor.
|
767 |
+
cond_inputs (list of tensors) : Conditional input.
|
768 |
+
Returns:
|
769 |
+
output (tensor) : Output tensor.
|
770 |
+
"""
|
771 |
+
# In this particular upsample residual block operation, we first
|
772 |
+
# upsample the skip connection.
|
773 |
+
if self.learn_shortcut:
|
774 |
+
x_shortcut = self.upsample(x)
|
775 |
+
x_shortcut = self.conv_block_s(x_shortcut, *cond_inputs)
|
776 |
+
else:
|
777 |
+
x_shortcut = self.upsample(x)
|
778 |
+
|
779 |
+
if self.order[0:3] == 'NAC':
|
780 |
+
for ix, layer in enumerate(self.conv_block_0.layers.values()):
|
781 |
+
if getattr(layer, 'conditional', False):
|
782 |
+
x = layer(x, *cond_inputs)
|
783 |
+
else:
|
784 |
+
x = layer(x)
|
785 |
+
if ix == 1:
|
786 |
+
x = self.upsample(x)
|
787 |
+
else:
|
788 |
+
x = self.conv_block_0(x, *cond_inputs)
|
789 |
+
x = self.upsample(x)
|
790 |
+
x = self.conv_block_1(x, *cond_inputs)
|
791 |
+
|
792 |
+
output = x_shortcut + x
|
793 |
+
return output
|
794 |
+
|
795 |
+
|
796 |
+
class UpRes2dBlock(_BaseUpResBlock):
|
797 |
+
r"""Residual block for 2D input with downsampling.
|
798 |
+
|
799 |
+
Args:
|
800 |
+
in_channels (int) : Number of channels in the input tensor.
|
801 |
+
out_channels (int) : Number of channels in the output tensor.
|
802 |
+
kernel_size (int, optional, default=3): Kernel size for the
|
803 |
+
convolutional filters in the residual link.
|
804 |
+
padding (int, optional, default=1): Padding size.
|
805 |
+
dilation (int, optional, default=1): Dilation factor.
|
806 |
+
groups (int, optional, default=1): Number of convolutional/linear
|
807 |
+
groups.
|
808 |
+
padding_mode (string, optional, default='zeros'): Type of padding:
|
809 |
+
``'zeros'``, ``'reflect'``, ``'replicate'`` or ``'circular'``.
|
810 |
+
weight_norm_type (str, optional, default='none'):
|
811 |
+
Type of weight normalization.
|
812 |
+
``'none'``, ``'spectral'``, ``'weight'``
|
813 |
+
or ``'weight_demod'``.
|
814 |
+
weight_norm_params (obj, optional, default=None):
|
815 |
+
Parameters of weight normalization.
|
816 |
+
If not ``None``, ``weight_norm_params.__dict__`` will be used as
|
817 |
+
keyword arguments when initializing weight normalization.
|
818 |
+
activation_norm_type (str, optional, default='none'):
|
819 |
+
Type of activation normalization.
|
820 |
+
``'none'``, ``'instance'``, ``'batch'``, ``'sync_batch'``,
|
821 |
+
``'layer'``, ``'layer_2d'``, ``'group'``, ``'adaptive'``,
|
822 |
+
``'spatially_adaptive'`` or ``'hyper_spatially_adaptive'``.
|
823 |
+
activation_norm_params (obj, optional, default=None):
|
824 |
+
Parameters of activation normalization.
|
825 |
+
If not ``None``, ``activation_norm_params.__dict__`` will be used as
|
826 |
+
keyword arguments when initializing activation normalization.
|
827 |
+
skip_activation_norm (bool, optional, default=True): If ``True`` and
|
828 |
+
``learn_shortcut`` is also ``True``, applies activation norm to the
|
829 |
+
learned shortcut connection.
|
830 |
+
skip_nonlinearity (bool, optional, default=True): If ``True`` and
|
831 |
+
``learn_shortcut`` is also ``True``, applies nonlinearity to the
|
832 |
+
learned shortcut connection.
|
833 |
+
nonlinearity (str, optional, default='none'):
|
834 |
+
Type of nonlinear activation function in the residual link.
|
835 |
+
``'none'``, ``'relu'``, ``'leakyrelu'``, ``'prelu'``,
|
836 |
+
``'tanh'`` , ``'sigmoid'`` or ``'softmax'``.
|
837 |
+
inplace_nonlinearity (bool, optional, default=False): If ``True``,
|
838 |
+
set ``inplace=True`` when initializing the nonlinearity layers.
|
839 |
+
apply_noise (bool, optional, default=False): If ``True``, adds
|
840 |
+
Gaussian noise with learnable magnitude to the convolution output.
|
841 |
+
hidden_channels_equal_out_channels (bool, optional, default=False):
|
842 |
+
If ``True``, set the hidden channel number to be equal to the
|
843 |
+
output channel number. If ``False``, the hidden channel number
|
844 |
+
equals to the smaller of the input channel number and the
|
845 |
+
output channel number.
|
846 |
+
order (str, optional, default='CNACNA'): Order of operations
|
847 |
+
in the residual link.
|
848 |
+
``'C'``: convolution,
|
849 |
+
``'N'``: normalization,
|
850 |
+
``'A'``: nonlinear activation.
|
851 |
+
upsample (class, optional, default=NearestUpsample): PPytorch
|
852 |
+
upsampling layer to be used.
|
853 |
+
up_factor (int, optional, default=2): Upsampling factor.
|
854 |
+
learn_shortcut (bool, optional, default=False): If ``True``, always use
|
855 |
+
a convolutional shortcut instead of an identity one, otherwise only
|
856 |
+
use a convolutional one if input and output have different number of
|
857 |
+
channels.
|
858 |
+
"""
|
859 |
+
|
860 |
+
def __init__(self, in_channels, out_channels, kernel_size=3,
|
861 |
+
padding=1, dilation=1, groups=1, bias=True,
|
862 |
+
padding_mode='zeros',
|
863 |
+
weight_norm_type='none', weight_norm_params=None,
|
864 |
+
activation_norm_type='none', activation_norm_params=None,
|
865 |
+
skip_activation_norm=True, skip_nonlinearity=False,
|
866 |
+
nonlinearity='leakyrelu', inplace_nonlinearity=False,
|
867 |
+
apply_noise=False, hidden_channels_equal_out_channels=False,
|
868 |
+
order='CNACNA', upsample=NearestUpsample, up_factor=2,
|
869 |
+
learn_shortcut=False):
|
870 |
+
super().__init__(in_channels, out_channels, kernel_size, padding,
|
871 |
+
dilation, groups, bias, padding_mode,
|
872 |
+
weight_norm_type, weight_norm_params,
|
873 |
+
activation_norm_type, activation_norm_params,
|
874 |
+
skip_activation_norm, skip_nonlinearity,
|
875 |
+
nonlinearity, inplace_nonlinearity,
|
876 |
+
apply_noise, hidden_channels_equal_out_channels,
|
877 |
+
order, Conv2dBlock,
|
878 |
+
upsample, up_factor, learn_shortcut)
|
879 |
+
|
880 |
+
|
881 |
+
class _BasePartialResBlock(_BaseResBlock):
|
882 |
+
r"""An abstract class for residual blocks with partial convolution.
|
883 |
+
"""
|
884 |
+
|
885 |
+
def __init__(self, in_channels, out_channels, kernel_size,
|
886 |
+
padding, dilation, groups, bias, padding_mode,
|
887 |
+
weight_norm_type, weight_norm_params,
|
888 |
+
activation_norm_type, activation_norm_params,
|
889 |
+
skip_activation_norm, skip_nonlinearity,
|
890 |
+
nonlinearity, inplace_nonlinearity,
|
891 |
+
multi_channel, return_mask,
|
892 |
+
apply_noise, hidden_channels_equal_out_channels,
|
893 |
+
order, block, learn_shortcut):
|
894 |
+
block = functools.partial(block,
|
895 |
+
multi_channel=multi_channel,
|
896 |
+
return_mask=return_mask)
|
897 |
+
self.partial_conv = True
|
898 |
+
super().__init__(in_channels, out_channels, kernel_size, padding,
|
899 |
+
dilation, groups, bias, padding_mode,
|
900 |
+
weight_norm_type, weight_norm_params,
|
901 |
+
activation_norm_type, activation_norm_params,
|
902 |
+
skip_activation_norm, skip_nonlinearity,
|
903 |
+
nonlinearity, inplace_nonlinearity,
|
904 |
+
apply_noise, hidden_channels_equal_out_channels,
|
905 |
+
order, block, learn_shortcut)
|
906 |
+
|
907 |
+
def forward(self, x, *cond_inputs, mask_in=None, **kw_cond_inputs):
|
908 |
+
r"""
|
909 |
+
|
910 |
+
Args:
|
911 |
+
x (tensor): Input tensor.
|
912 |
+
cond_inputs (list of tensors) : Conditional input tensors.
|
913 |
+
mask_in (tensor, optional, default=``None``) If not ``None``,
|
914 |
+
it masks the valid input region.
|
915 |
+
kw_cond_inputs (dict) : Keyword conditional inputs.
|
916 |
+
Returns:
|
917 |
+
(tuple):
|
918 |
+
- output (tensor): Output tensor.
|
919 |
+
- mask_out (tensor, optional): Masks the valid output region.
|
920 |
+
"""
|
921 |
+
if self.conv_block_0.layers.conv.return_mask:
|
922 |
+
dx, mask_out = self.conv_block_0(x, *cond_inputs,
|
923 |
+
mask_in=mask_in, **kw_cond_inputs)
|
924 |
+
dx, mask_out = self.conv_block_1(dx, *cond_inputs,
|
925 |
+
mask_in=mask_out, **kw_cond_inputs)
|
926 |
+
else:
|
927 |
+
dx = self.conv_block_0(x, *cond_inputs,
|
928 |
+
mask_in=mask_in, **kw_cond_inputs)
|
929 |
+
dx = self.conv_block_1(dx, *cond_inputs,
|
930 |
+
mask_in=mask_in, **kw_cond_inputs)
|
931 |
+
mask_out = None
|
932 |
+
|
933 |
+
if self.learn_shortcut:
|
934 |
+
x_shortcut = self.conv_block_s(x, mask_in=mask_in, *cond_inputs,
|
935 |
+
**kw_cond_inputs)
|
936 |
+
if type(x_shortcut) == tuple:
|
937 |
+
x_shortcut, _ = x_shortcut
|
938 |
+
else:
|
939 |
+
x_shortcut = x
|
940 |
+
output = x_shortcut + dx
|
941 |
+
|
942 |
+
if mask_out is not None:
|
943 |
+
return output, mask_out
|
944 |
+
return output
|
945 |
+
|
946 |
+
|
947 |
+
class PartialRes2dBlock(_BasePartialResBlock):
|
948 |
+
r"""Residual block for 2D input with partial convolution.
|
949 |
+
|
950 |
+
Args:
|
951 |
+
in_channels (int) : Number of channels in the input tensor.
|
952 |
+
out_channels (int) : Number of channels in the output tensor.
|
953 |
+
kernel_size (int, optional, default=3): Kernel size for the
|
954 |
+
convolutional filters in the residual link.
|
955 |
+
padding (int, optional, default=1): Padding size.
|
956 |
+
dilation (int, optional, default=1): Dilation factor.
|
957 |
+
groups (int, optional, default=1): Number of convolutional/linear
|
958 |
+
groups.
|
959 |
+
padding_mode (string, optional, default='zeros'): Type of padding:
|
960 |
+
``'zeros'``, ``'reflect'``, ``'replicate'`` or ``'circular'``.
|
961 |
+
weight_norm_type (str, optional, default='none'):
|
962 |
+
Type of weight normalization.
|
963 |
+
``'none'``, ``'spectral'``, ``'weight'``
|
964 |
+
or ``'weight_demod'``.
|
965 |
+
weight_norm_params (obj, optional, default=None):
|
966 |
+
Parameters of weight normalization.
|
967 |
+
If not ``None``, ``weight_norm_params.__dict__`` will be used as
|
968 |
+
keyword arguments when initializing weight normalization.
|
969 |
+
activation_norm_type (str, optional, default='none'):
|
970 |
+
Type of activation normalization.
|
971 |
+
``'none'``, ``'instance'``, ``'batch'``, ``'sync_batch'``,
|
972 |
+
``'layer'``, ``'layer_2d'``, ``'group'``, ``'adaptive'``,
|
973 |
+
``'spatially_adaptive'`` or ``'hyper_spatially_adaptive'``.
|
974 |
+
activation_norm_params (obj, optional, default=None):
|
975 |
+
Parameters of activation normalization.
|
976 |
+
If not ``None``, ``activation_norm_params.__dict__`` will be used as
|
977 |
+
keyword arguments when initializing activation normalization.
|
978 |
+
skip_activation_norm (bool, optional, default=True): If ``True`` and
|
979 |
+
``learn_shortcut`` is also ``True``, applies activation norm to the
|
980 |
+
learned shortcut connection.
|
981 |
+
skip_nonlinearity (bool, optional, default=True): If ``True`` and
|
982 |
+
``learn_shortcut`` is also ``True``, applies nonlinearity to the
|
983 |
+
learned shortcut connection.
|
984 |
+
nonlinearity (str, optional, default='none'):
|
985 |
+
Type of nonlinear activation function in the residual link.
|
986 |
+
``'none'``, ``'relu'``, ``'leakyrelu'``, ``'prelu'``,
|
987 |
+
``'tanh'`` , ``'sigmoid'`` or ``'softmax'``.
|
988 |
+
inplace_nonlinearity (bool, optional, default=False): If ``True``,
|
989 |
+
set ``inplace=True`` when initializing the nonlinearity layers.
|
990 |
+
apply_noise (bool, optional, default=False): If ``True``, adds
|
991 |
+
Gaussian noise with learnable magnitude to the convolution output.
|
992 |
+
hidden_channels_equal_out_channels (bool, optional, default=False):
|
993 |
+
If ``True``, set the hidden channel number to be equal to the
|
994 |
+
output channel number. If ``False``, the hidden channel number
|
995 |
+
equals to the smaller of the input channel number and the
|
996 |
+
output channel number.
|
997 |
+
order (str, optional, default='CNACNA'): Order of operations
|
998 |
+
in the residual link.
|
999 |
+
``'C'``: convolution,
|
1000 |
+
``'N'``: normalization,
|
1001 |
+
``'A'``: nonlinear activation.
|
1002 |
+
learn_shortcut (bool, optional, default=False): If ``True``, always use
|
1003 |
+
a convolutional shortcut instead of an identity one, otherwise only
|
1004 |
+
use a convolutional one if input and output have different number of
|
1005 |
+
channels.
|
1006 |
+
"""
|
1007 |
+
|
1008 |
+
def __init__(self, in_channels, out_channels, kernel_size=3,
|
1009 |
+
padding=1, dilation=1, groups=1, bias=True,
|
1010 |
+
padding_mode='zeros',
|
1011 |
+
weight_norm_type='none', weight_norm_params=None,
|
1012 |
+
activation_norm_type='none', activation_norm_params=None,
|
1013 |
+
skip_activation_norm=True, skip_nonlinearity=False,
|
1014 |
+
nonlinearity='leakyrelu', inplace_nonlinearity=False,
|
1015 |
+
multi_channel=False, return_mask=True,
|
1016 |
+
apply_noise=False,
|
1017 |
+
hidden_channels_equal_out_channels=False,
|
1018 |
+
order='CNACNA', learn_shortcut=False):
|
1019 |
+
super().__init__(in_channels, out_channels, kernel_size, padding,
|
1020 |
+
dilation, groups, bias, padding_mode,
|
1021 |
+
weight_norm_type, weight_norm_params,
|
1022 |
+
activation_norm_type, activation_norm_params,
|
1023 |
+
skip_activation_norm, skip_nonlinearity,
|
1024 |
+
nonlinearity, inplace_nonlinearity,
|
1025 |
+
multi_channel, return_mask,
|
1026 |
+
apply_noise, hidden_channels_equal_out_channels,
|
1027 |
+
order, PartialConv2dBlock, learn_shortcut)
|
1028 |
+
|
1029 |
+
|
1030 |
+
class PartialRes3dBlock(_BasePartialResBlock):
|
1031 |
+
r"""Residual block for 3D input with partial convolution.
|
1032 |
+
|
1033 |
+
Args:
|
1034 |
+
in_channels (int) : Number of channels in the input tensor.
|
1035 |
+
out_channels (int) : Number of channels in the output tensor.
|
1036 |
+
kernel_size (int, optional, default=3): Kernel size for the
|
1037 |
+
convolutional filters in the residual link.
|
1038 |
+
padding (int, optional, default=1): Padding size.
|
1039 |
+
dilation (int, optional, default=1): Dilation factor.
|
1040 |
+
groups (int, optional, default=1): Number of convolutional/linear
|
1041 |
+
groups.
|
1042 |
+
padding_mode (string, optional, default='zeros'): Type of padding:
|
1043 |
+
``'zeros'``, ``'reflect'``, ``'replicate'`` or ``'circular'``.
|
1044 |
+
weight_norm_type (str, optional, default='none'):
|
1045 |
+
Type of weight normalization.
|
1046 |
+
``'none'``, ``'spectral'``, ``'weight'``
|
1047 |
+
or ``'weight_demod'``.
|
1048 |
+
weight_norm_params (obj, optional, default=None):
|
1049 |
+
Parameters of weight normalization.
|
1050 |
+
If not ``None``, ``weight_norm_params.__dict__`` will be used as
|
1051 |
+
keyword arguments when initializing weight normalization.
|
1052 |
+
activation_norm_type (str, optional, default='none'):
|
1053 |
+
Type of activation normalization.
|
1054 |
+
``'none'``, ``'instance'``, ``'batch'``, ``'sync_batch'``,
|
1055 |
+
``'layer'``, ``'layer_2d'``, ``'group'``, ``'adaptive'``,
|
1056 |
+
``'spatially_adaptive'`` or ``'hyper_spatially_adaptive'``.
|
1057 |
+
activation_norm_params (obj, optional, default=None):
|
1058 |
+
Parameters of activation normalization.
|
1059 |
+
If not ``None``, ``activation_norm_params.__dict__`` will be used as
|
1060 |
+
keyword arguments when initializing activation normalization.
|
1061 |
+
skip_activation_norm (bool, optional, default=True): If ``True`` and
|
1062 |
+
``learn_shortcut`` is also ``True``, applies activation norm to the
|
1063 |
+
learned shortcut connection.
|
1064 |
+
skip_nonlinearity (bool, optional, default=True): If ``True`` and
|
1065 |
+
``learn_shortcut`` is also ``True``, applies nonlinearity to the
|
1066 |
+
learned shortcut connection.
|
1067 |
+
nonlinearity (str, optional, default='none'):
|
1068 |
+
Type of nonlinear activation function in the residual link.
|
1069 |
+
``'none'``, ``'relu'``, ``'leakyrelu'``, ``'prelu'``,
|
1070 |
+
``'tanh'`` , ``'sigmoid'`` or ``'softmax'``.
|
1071 |
+
inplace_nonlinearity (bool, optional, default=False): If ``True``,
|
1072 |
+
set ``inplace=True`` when initializing the nonlinearity layers.
|
1073 |
+
apply_noise (bool, optional, default=False): If ``True``, adds
|
1074 |
+
Gaussian noise with learnable magnitude to the convolution output.
|
1075 |
+
hidden_channels_equal_out_channels (bool, optional, default=False):
|
1076 |
+
If ``True``, set the hidden channel number to be equal to the
|
1077 |
+
output channel number. If ``False``, the hidden channel number
|
1078 |
+
equals to the smaller of the input channel number and the
|
1079 |
+
output channel number.
|
1080 |
+
order (str, optional, default='CNACNA'): Order of operations
|
1081 |
+
in the residual link.
|
1082 |
+
``'C'``: convolution,
|
1083 |
+
``'N'``: normalization,
|
1084 |
+
``'A'``: nonlinear activation.
|
1085 |
+
learn_shortcut (bool, optional, default=False): If ``True``, always use
|
1086 |
+
a convolutional shortcut instead of an identity one, otherwise only
|
1087 |
+
use a convolutional one if input and output have different number of
|
1088 |
+
channels.
|
1089 |
+
"""
|
1090 |
+
|
1091 |
+
def __init__(self, in_channels, out_channels, kernel_size=3,
|
1092 |
+
padding=1, dilation=1, groups=1, bias=True,
|
1093 |
+
padding_mode='zeros',
|
1094 |
+
weight_norm_type='none', weight_norm_params=None,
|
1095 |
+
activation_norm_type='none', activation_norm_params=None,
|
1096 |
+
skip_activation_norm=True, skip_nonlinearity=False,
|
1097 |
+
nonlinearity='leakyrelu', inplace_nonlinearity=False,
|
1098 |
+
multi_channel=False, return_mask=True,
|
1099 |
+
apply_noise=False, hidden_channels_equal_out_channels=False,
|
1100 |
+
order='CNACNA', learn_shortcut=False):
|
1101 |
+
super().__init__(in_channels, out_channels, kernel_size, padding,
|
1102 |
+
dilation, groups, bias, padding_mode,
|
1103 |
+
weight_norm_type, weight_norm_params,
|
1104 |
+
activation_norm_type, activation_norm_params,
|
1105 |
+
skip_activation_norm, skip_nonlinearity,
|
1106 |
+
nonlinearity, inplace_nonlinearity,
|
1107 |
+
multi_channel, return_mask,
|
1108 |
+
apply_noise, hidden_channels_equal_out_channels,
|
1109 |
+
order, PartialConv3dBlock, learn_shortcut)
|
1110 |
+
|
1111 |
+
|
1112 |
+
class _BaseMultiOutResBlock(_BaseResBlock):
|
1113 |
+
r"""An abstract class for residual blocks that can returns multiple outputs.
|
1114 |
+
"""
|
1115 |
+
|
1116 |
+
def __init__(self, in_channels, out_channels, kernel_size,
|
1117 |
+
padding, dilation, groups, bias, padding_mode,
|
1118 |
+
weight_norm_type, weight_norm_params,
|
1119 |
+
activation_norm_type, activation_norm_params,
|
1120 |
+
skip_activation_norm, skip_nonlinearity,
|
1121 |
+
nonlinearity, inplace_nonlinearity,
|
1122 |
+
apply_noise, hidden_channels_equal_out_channels,
|
1123 |
+
order, block, learn_shortcut):
|
1124 |
+
self.multiple_outputs = True
|
1125 |
+
super().__init__(in_channels, out_channels, kernel_size, padding,
|
1126 |
+
dilation, groups, bias, padding_mode,
|
1127 |
+
weight_norm_type, weight_norm_params,
|
1128 |
+
activation_norm_type, activation_norm_params,
|
1129 |
+
skip_activation_norm, skip_nonlinearity,
|
1130 |
+
nonlinearity, inplace_nonlinearity, apply_noise,
|
1131 |
+
hidden_channels_equal_out_channels,
|
1132 |
+
order, block, learn_shortcut)
|
1133 |
+
|
1134 |
+
def forward(self, x, *cond_inputs):
|
1135 |
+
r"""
|
1136 |
+
|
1137 |
+
Args:
|
1138 |
+
x (tensor): Input tensor.
|
1139 |
+
cond_inputs (list of tensors) : Conditional input tensors.
|
1140 |
+
Returns:
|
1141 |
+
(tuple):
|
1142 |
+
- output (tensor): Output tensor.
|
1143 |
+
- aux_outputs_0 (tensor): Auxiliary output of the first block.
|
1144 |
+
- aux_outputs_1 (tensor): Auxiliary output of the second block.
|
1145 |
+
"""
|
1146 |
+
dx, aux_outputs_0 = self.conv_block_0(x, *cond_inputs)
|
1147 |
+
dx, aux_outputs_1 = self.conv_block_1(dx, *cond_inputs)
|
1148 |
+
if self.learn_shortcut:
|
1149 |
+
# We are not using the auxiliary outputs of self.conv_block_s.
|
1150 |
+
x_shortcut, _ = self.conv_block_s(x, *cond_inputs)
|
1151 |
+
else:
|
1152 |
+
x_shortcut = x
|
1153 |
+
output = x_shortcut + dx
|
1154 |
+
return output, aux_outputs_0, aux_outputs_1
|
1155 |
+
|
1156 |
+
|
1157 |
+
class MultiOutRes2dBlock(_BaseMultiOutResBlock):
|
1158 |
+
r"""Residual block for 2D input. It can return multiple outputs, if some
|
1159 |
+
layers in the block return more than one output.
|
1160 |
+
|
1161 |
+
Args:
|
1162 |
+
in_channels (int) : Number of channels in the input tensor.
|
1163 |
+
out_channels (int) : Number of channels in the output tensor.
|
1164 |
+
kernel_size (int, optional, default=3): Kernel size for the
|
1165 |
+
convolutional filters in the residual link.
|
1166 |
+
padding (int, optional, default=1): Padding size.
|
1167 |
+
dilation (int, optional, default=1): Dilation factor.
|
1168 |
+
groups (int, optional, default=1): Number of convolutional/linear
|
1169 |
+
groups.
|
1170 |
+
padding_mode (string, optional, default='zeros'): Type of padding:
|
1171 |
+
``'zeros'``, ``'reflect'``, ``'replicate'`` or ``'circular'``.
|
1172 |
+
weight_norm_type (str, optional, default='none'):
|
1173 |
+
Type of weight normalization.
|
1174 |
+
``'none'``, ``'spectral'``, ``'weight'``
|
1175 |
+
or ``'weight_demod'``.
|
1176 |
+
weight_norm_params (obj, optional, default=None):
|
1177 |
+
Parameters of weight normalization.
|
1178 |
+
If not ``None``, ``weight_norm_params.__dict__`` will be used as
|
1179 |
+
keyword arguments when initializing weight normalization.
|
1180 |
+
activation_norm_type (str, optional, default='none'):
|
1181 |
+
Type of activation normalization.
|
1182 |
+
``'none'``, ``'instance'``, ``'batch'``, ``'sync_batch'``,
|
1183 |
+
``'layer'``, ``'layer_2d'``, ``'group'``, ``'adaptive'``,
|
1184 |
+
``'spatially_adaptive'`` or ``'hyper_spatially_adaptive'``.
|
1185 |
+
activation_norm_params (obj, optional, default=None):
|
1186 |
+
Parameters of activation normalization.
|
1187 |
+
If not ``None``, ``activation_norm_params.__dict__`` will be used as
|
1188 |
+
keyword arguments when initializing activation normalization.
|
1189 |
+
skip_activation_norm (bool, optional, default=True): If ``True`` and
|
1190 |
+
``learn_shortcut`` is also ``True``, applies activation norm to the
|
1191 |
+
learned shortcut connection.
|
1192 |
+
skip_nonlinearity (bool, optional, default=True): If ``True`` and
|
1193 |
+
``learn_shortcut`` is also ``True``, applies nonlinearity to the
|
1194 |
+
learned shortcut connection.
|
1195 |
+
nonlinearity (str, optional, default='none'):
|
1196 |
+
Type of nonlinear activation function in the residual link.
|
1197 |
+
``'none'``, ``'relu'``, ``'leakyrelu'``, ``'prelu'``,
|
1198 |
+
``'tanh'`` , ``'sigmoid'`` or ``'softmax'``.
|
1199 |
+
inplace_nonlinearity (bool, optional, default=False): If ``True``,
|
1200 |
+
set ``inplace=True`` when initializing the nonlinearity layers.
|
1201 |
+
apply_noise (bool, optional, default=False): If ``True``, adds
|
1202 |
+
Gaussian noise with learnable magnitude to the convolution output.
|
1203 |
+
hidden_channels_equal_out_channels (bool, optional, default=False):
|
1204 |
+
If ``True``, set the hidden channel number to be equal to the
|
1205 |
+
output channel number. If ``False``, the hidden channel number
|
1206 |
+
equals to the smaller of the input channel number and the
|
1207 |
+
output channel number.
|
1208 |
+
order (str, optional, default='CNACNA'): Order of operations
|
1209 |
+
in the residual link.
|
1210 |
+
``'C'``: convolution,
|
1211 |
+
``'N'``: normalization,
|
1212 |
+
``'A'``: nonlinear activation.
|
1213 |
+
learn_shortcut (bool, optional, default=False): If ``True``, always use
|
1214 |
+
a convolutional shortcut instead of an identity one, otherwise only
|
1215 |
+
use a convolutional one if input and output have different number of
|
1216 |
+
channels.
|
1217 |
+
"""
|
1218 |
+
|
1219 |
+
def __init__(self, in_channels, out_channels, kernel_size=3,
|
1220 |
+
padding=1, dilation=1, groups=1, bias=True,
|
1221 |
+
padding_mode='zeros',
|
1222 |
+
weight_norm_type='none', weight_norm_params=None,
|
1223 |
+
activation_norm_type='none', activation_norm_params=None,
|
1224 |
+
skip_activation_norm=True, skip_nonlinearity=False,
|
1225 |
+
nonlinearity='leakyrelu', inplace_nonlinearity=False,
|
1226 |
+
apply_noise=False, hidden_channels_equal_out_channels=False,
|
1227 |
+
order='CNACNA', learn_shortcut=False):
|
1228 |
+
super().__init__(in_channels, out_channels, kernel_size, padding,
|
1229 |
+
dilation, groups, bias, padding_mode,
|
1230 |
+
weight_norm_type, weight_norm_params,
|
1231 |
+
activation_norm_type, activation_norm_params,
|
1232 |
+
skip_activation_norm, skip_nonlinearity,
|
1233 |
+
nonlinearity, inplace_nonlinearity,
|
1234 |
+
apply_noise, hidden_channels_equal_out_channels,
|
1235 |
+
order, MultiOutConv2dBlock, learn_shortcut)
|
models/layers/weight_norm.py
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (C) 2020 NVIDIA Corporation. All rights reserved.
|
2 |
+
#
|
3 |
+
# This work is made available under the Nvidia Source Code License-NC.
|
4 |
+
# To view a copy of this license, check out LICENSE.md
|
5 |
+
import functools
|
6 |
+
|
7 |
+
import torch
|
8 |
+
from torch import nn
|
9 |
+
from torch.nn.utils import spectral_norm, weight_norm
|
10 |
+
|
11 |
+
from .conv import LinearBlock
|
12 |
+
|
13 |
+
|
14 |
+
class WeightDemodulation(nn.Module):
|
15 |
+
r"""Weight demodulation in
|
16 |
+
"Analyzing and Improving the Image Quality of StyleGAN", Karras et al.
|
17 |
+
|
18 |
+
Args:
|
19 |
+
conv (torch.nn.Modules): Convolutional layer.
|
20 |
+
cond_dims (int): The number of channels in the conditional input.
|
21 |
+
eps (float, optional, default=1e-8): a value added to the
|
22 |
+
denominator for numerical stability.
|
23 |
+
adaptive_bias (bool, optional, default=False): If ``True``, adaptively
|
24 |
+
predicts bias from the conditional input.
|
25 |
+
demod (bool, optional, default=False): If ``True``, performs
|
26 |
+
weight demodulation.
|
27 |
+
"""
|
28 |
+
|
29 |
+
def __init__(self, conv, cond_dims, eps=1e-8,
|
30 |
+
adaptive_bias=False, demod=True):
|
31 |
+
super().__init__()
|
32 |
+
self.conv = conv
|
33 |
+
self.adaptive_bias = adaptive_bias
|
34 |
+
if adaptive_bias:
|
35 |
+
self.conv.register_parameter('bias', None)
|
36 |
+
self.fc_beta = LinearBlock(cond_dims, self.conv.out_channels)
|
37 |
+
self.fc_gamma = LinearBlock(cond_dims, self.conv.in_channels)
|
38 |
+
self.eps = eps
|
39 |
+
self.demod = demod
|
40 |
+
self.conditional = True
|
41 |
+
|
42 |
+
def forward(self, x, y):
|
43 |
+
r"""Weight demodulation forward"""
|
44 |
+
b, c, h, w = x.size()
|
45 |
+
self.conv.groups = b
|
46 |
+
gamma = self.fc_gamma(y)
|
47 |
+
gamma = gamma[:, None, :, None, None]
|
48 |
+
weight = self.conv.weight[None, :, :, :, :] * (gamma + 1)
|
49 |
+
|
50 |
+
if self.demod:
|
51 |
+
d = torch.rsqrt(
|
52 |
+
(weight ** 2).sum(dim=(2, 3, 4), keepdim=True) + self.eps)
|
53 |
+
weight = weight * d
|
54 |
+
|
55 |
+
x = x.reshape(1, -1, h, w)
|
56 |
+
_, _, *ws = weight.shape
|
57 |
+
weight = weight.reshape(b * self.conv.out_channels, *ws)
|
58 |
+
x = self.conv.conv2d_forward(x, weight)
|
59 |
+
|
60 |
+
x = x.reshape(-1, self.conv.out_channels, h, w)
|
61 |
+
if self.adaptive_bias:
|
62 |
+
x += self.fc_beta(y)[:, :, None, None]
|
63 |
+
return x
|
64 |
+
|
65 |
+
|
66 |
+
def weight_demod(conv, cond_dims=256, eps=1e-8, demod=True):
|
67 |
+
r"""Weight demodulation."""
|
68 |
+
return WeightDemodulation(conv, cond_dims, eps, demod)
|
69 |
+
|
70 |
+
|
71 |
+
def get_weight_norm_layer(norm_type, **norm_params):
|
72 |
+
r"""Return weight normalization.
|
73 |
+
|
74 |
+
Args:
|
75 |
+
norm_type (str):
|
76 |
+
Type of weight normalization.
|
77 |
+
``'none'``, ``'spectral'``, ``'weight'``
|
78 |
+
or ``'weight_demod'``.
|
79 |
+
norm_params: Arbitrary keyword arguments that will be used to
|
80 |
+
initialize the weight normalization.
|
81 |
+
"""
|
82 |
+
if norm_type == 'none' or norm_type == '': # no normalization
|
83 |
+
return lambda x: x
|
84 |
+
elif norm_type == 'spectral': # spectral normalization
|
85 |
+
return functools.partial(spectral_norm, **norm_params)
|
86 |
+
elif norm_type == 'weight': # weight normalization
|
87 |
+
return functools.partial(weight_norm, **norm_params)
|
88 |
+
elif norm_type == 'weight_demod': # weight demodulation
|
89 |
+
return functools.partial(weight_demod, **norm_params)
|
90 |
+
else:
|
91 |
+
raise ValueError(
|
92 |
+
'Weight norm layer %s is not recognized' % norm_type)
|