|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import argparse |
|
import gc |
|
import json |
|
import os |
|
import shutil |
|
import warnings |
|
|
|
import torch |
|
|
|
from transformers import ( |
|
LlamaTokenizer |
|
) |
|
|
|
from .modeling_moe_mistral import MixtralForCausalLM |
|
from .configuration_moe_mistral import MixtralConfig |
|
|
|
try: |
|
from transformers import LlamaTokenizerFast |
|
|
|
tokenizer_class = LlamaTokenizerFast |
|
except ImportError as e: |
|
warnings.warn(e) |
|
warnings.warn( |
|
"The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion" |
|
) |
|
tokenizer_class = LlamaTokenizer |
|
|
|
""" |
|
Sample usage: |
|
|
|
``` |
|
python src/transformers/models/mistral/convert_mistral_weights_to_hf.py \ |
|
--input_dir /path/to/downloaded/mistral/weights --model_size 7B --output_dir /output/path |
|
``` |
|
|
|
Thereafter, models can be loaded via: |
|
|
|
```py |
|
from transformers import MistralForCausalLM, LlamaTokenizer |
|
|
|
model = MistralForCausalLM.from_pretrained("/output/path") |
|
tokenizer = LlamaTokenizer.from_pretrained("/output/path") |
|
``` |
|
|
|
Important note: you need to be able to host the whole model in RAM to execute this script (even if the biggest versions |
|
come in several checkpoints they each contain a part of each weight of the model, so we need to load them all in RAM). |
|
""" |
|
|
|
NUM_SHARDS = {"7B": 1} |
|
|
|
|
|
def compute_intermediate_size(n, ffn_dim_multiplier=1, multiple_of=256): |
|
return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3)) + multiple_of - 1) // multiple_of) |
|
|
|
|
|
def read_json(path): |
|
with open(path, "r") as f: |
|
return json.load(f) |
|
|
|
|
|
def write_json(text, path): |
|
with open(path, "w") as f: |
|
json.dump(text, f) |
|
|
|
|
|
def write_model(model_path, input_base_path, model_size, tokenizer_path=None, safe_serialization=True): |
|
|
|
if not os.path.isfile(os.path.join(input_base_path, "params.json")): |
|
input_base_path = os.path.join(input_base_path, model_size) |
|
|
|
os.makedirs(model_path, exist_ok=True) |
|
tmp_model_path = os.path.join(model_path, "tmp") |
|
os.makedirs(tmp_model_path, exist_ok=True) |
|
|
|
params = read_json(os.path.join(input_base_path, "params.json")) |
|
num_shards = NUM_SHARDS[model_size] |
|
|
|
n_layers = params["n_layers"] |
|
n_heads = params["n_heads"] |
|
n_heads_per_shard = n_heads // num_shards |
|
dim = params["dim"] |
|
dims_per_head = dim // n_heads |
|
base = params.get("rope_theta", 100000.0) |
|
inv_freq = 1.0 / (base ** (torch.arange(0, dims_per_head, 2).float() / dims_per_head)) |
|
max_position_embeddings = 4096 * 8 |
|
num_experts_per_token = params["moe"]["num_experts_per_tok"] |
|
num_experts = params["moe"]["num_experts"] |
|
|
|
|
|
if tokenizer_path is not None: |
|
tokenizer = tokenizer_class(tokenizer_path) |
|
tokenizer.save_pretrained(model_path) |
|
vocab_size = tokenizer.vocab_size if tokenizer_path is not None else 32000 |
|
|
|
if "n_kv_heads" in params: |
|
num_key_value_heads = params["n_kv_heads"] |
|
num_local_key_value_heads = num_key_value_heads // num_shards |
|
key_value_dim = dims_per_head * num_local_key_value_heads |
|
else: |
|
num_key_value_heads = n_heads |
|
num_local_key_value_heads = n_heads_per_shard |
|
key_value_dim = dim |
|
|
|
|
|
def permute(w, n_heads=n_heads, dim1=dim, dim2=dim): |
|
return w.view(n_heads, dim1 // n_heads // 2, 2, dim2).transpose(1, 2).reshape(dim1, dim2) |
|
|
|
|
|
print(f"Fetching all parameters from the checkpoint at {input_base_path}.") |
|
|
|
loaded = [ |
|
torch.load(os.path.join(input_base_path, f"consolidated.{i:02d}.pth"), map_location="cpu") |
|
for i in range(num_shards) |
|
] |
|
param_count = 0 |
|
index_dict = {"weight_map": {}} |
|
for layer_i in range(n_layers): |
|
filename = f"pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin" |
|
|
|
|
|
|
|
|
|
|
|
|
|
state_dict = { |
|
f"model.layers.{layer_i}.input_layernorm.weight": loaded[0][ |
|
f"layers.{layer_i}.attention_norm.weight" |
|
].clone(), |
|
f"model.layers.{layer_i}.post_attention_layernorm.weight": loaded[0][ |
|
f"layers.{layer_i}.ffn_norm.weight" |
|
].clone(), |
|
} |
|
state_dict[f"model.layers.{layer_i}.self_attn.q_proj.weight"] = permute( |
|
torch.cat( |
|
[ |
|
loaded[i][f"layers.{layer_i}.attention.wq.weight"].view(n_heads_per_shard, dims_per_head, dim) |
|
for i in range(num_shards) |
|
], |
|
dim=0, |
|
).reshape(dim, dim) |
|
) |
|
state_dict[f"model.layers.{layer_i}.self_attn.k_proj.weight"] = permute( |
|
torch.cat( |
|
[ |
|
loaded[i][f"layers.{layer_i}.attention.wk.weight"].view( |
|
num_local_key_value_heads, dims_per_head, dim |
|
) |
|
for i in range(num_shards) |
|
], |
|
dim=0, |
|
).reshape(key_value_dim, dim), |
|
num_key_value_heads, |
|
key_value_dim, |
|
dim, |
|
) |
|
state_dict[f"model.layers.{layer_i}.self_attn.v_proj.weight"] = torch.cat( |
|
[ |
|
loaded[i][f"layers.{layer_i}.attention.wv.weight"].view(num_local_key_value_heads, dims_per_head, dim) |
|
for i in range(num_shards) |
|
], |
|
dim=0, |
|
).reshape(key_value_dim, dim) |
|
|
|
state_dict[f"model.layers.{layer_i}.self_attn.o_proj.weight"] = torch.cat( |
|
[loaded[i][f"layers.{layer_i}.attention.wo.weight"] for i in range(num_shards)], dim=1 |
|
) |
|
|
|
for expert in range(num_experts): |
|
state_dict[f"model.layers.{layer_i}.mlp.experts.{expert}.w1.weight"] = loaded[0][f"layers.{layer_i}.feed_forward.experts.{expert}.w1.weight"] |
|
state_dict[f"model.layers.{layer_i}.mlp.experts.{expert}.w2.weight"] = loaded[0][f"layers.{layer_i}.feed_forward.experts.{expert}.w2.weight"] |
|
state_dict[f"model.layers.{layer_i}.mlp.experts.{expert}.w3.weight"] = loaded[0][f"layers.{layer_i}.feed_forward.experts.{expert}.w3.weight"] |
|
|
|
state_dict[f"model.layers.{layer_i}.mlp.gate.weight"] = loaded[0][f"layers.{layer_i}.feed_forward.gate.weight"] |
|
|
|
state_dict[f"model.layers.{layer_i}.self_attn.rotary_emb.inv_freq"] = inv_freq |
|
for k, v in state_dict.items(): |
|
index_dict["weight_map"][k] = filename |
|
param_count += v.numel() |
|
torch.save(state_dict, os.path.join(tmp_model_path, filename)) |
|
|
|
filename = f"pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin" |
|
state_dict = { |
|
"model.norm.weight": loaded[0]["norm.weight"], |
|
"model.embed_tokens.weight": torch.cat([loaded[i]["tok_embeddings.weight"] for i in range(num_shards)], dim=1), |
|
"lm_head.weight": torch.cat([loaded[i]["output.weight"] for i in range(num_shards)], dim=0), |
|
} |
|
|
|
for k, v in state_dict.items(): |
|
index_dict["weight_map"][k] = filename |
|
param_count += v.numel() |
|
print(param_count) |
|
torch.save(state_dict, os.path.join(tmp_model_path, filename)) |
|
|
|
index_dict["metadata"] = {"total_size": param_count * 2} |
|
write_json(index_dict, os.path.join(tmp_model_path, "pytorch_model.bin.index.json")) |
|
config = MixtralConfig( |
|
hidden_size=dim, |
|
intermediate_size=params["hidden_dim"], |
|
num_attention_heads=params["n_heads"], |
|
num_hidden_layers=params["n_layers"], |
|
rms_norm_eps=params["norm_eps"], |
|
num_key_value_heads=num_key_value_heads, |
|
vocab_size=vocab_size, |
|
rope_theta=base, |
|
max_position_embeddings=max_position_embeddings, |
|
num_experts=num_experts, |
|
num_experts_per_token=num_experts_per_token |
|
) |
|
config.save_pretrained(tmp_model_path) |
|
|
|
del state_dict |
|
del loaded |
|
gc.collect() |
|
|
|
print("Loading the checkpoint in a Mistral model.") |
|
model = MixtralForCausalLM.from_pretrained(tmp_model_path, torch_dtype=torch.float16, low_cpu_mem_usage=True) |
|
|
|
del model.config._name_or_path |
|
model.config.torch_dtype = torch.float16 |
|
print("Saving in the Transformers format.") |
|
model.save_pretrained(model_path, safe_serialization=safe_serialization) |
|
shutil.rmtree(tmp_model_path) |
|
|
|
|
|
def write_tokenizer(tokenizer_path, input_tokenizer_path): |
|
|
|
print(f"Saving a {tokenizer_class.__name__} to {tokenizer_path}.") |
|
tokenizer = tokenizer_class(input_tokenizer_path) |
|
tokenizer.save_pretrained(tokenizer_path) |
|
|
|
|
|
def main(): |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument( |
|
"--input_dir", |
|
help="Location of Mistral weights, which contains tokenizer.model and model folders", |
|
) |
|
parser.add_argument( |
|
"--model_size", |
|
choices=["7B", "tokenizer_only"], |
|
help="'f' models correspond to the finetuned versions, and are specific to the Mistral2 official release. For more details on Mistral2, checkout the original repo: https://huggingface.co./meta-mistral", |
|
) |
|
parser.add_argument( |
|
"--output_dir", |
|
help="Location to write HF model and tokenizer", |
|
) |
|
parser.add_argument("--safe_serialization", type=bool, help="Whether or not to save using `safetensors`.") |
|
args = parser.parse_args() |
|
spm_path = os.path.join(args.input_dir, "tokenizer.model") |
|
if args.model_size != "tokenizer_only": |
|
write_model( |
|
model_path=args.output_dir, |
|
input_base_path=args.input_dir, |
|
model_size=args.model_size, |
|
safe_serialization=args.safe_serialization, |
|
tokenizer_path=spm_path, |
|
) |
|
else: |
|
write_tokenizer(args.output_dir, spm_path) |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|