Dingyun-Huang commited on
Commit
40ba172
·
verified ·
1 Parent(s): 5e2dcd8

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +0 -95
README.md CHANGED
@@ -1,95 +0,0 @@
1
- ---
2
- library_name: sentence-transformers
3
- pipeline_tag: sentence-similarity
4
- tags:
5
- - sentence-transformers
6
- - feature-extraction
7
- - sentence-similarity
8
- - transformers
9
-
10
- ---
11
-
12
- # Dingyun-Huang/oe-sroberta-raw-mean
13
-
14
- This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
15
-
16
- <!--- Describe your model here -->
17
-
18
- ## Usage (Sentence-Transformers)
19
-
20
- Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
21
-
22
- ```
23
- pip install -U sentence-transformers
24
- ```
25
-
26
- Then you can use the model like this:
27
-
28
- ```python
29
- from sentence_transformers import SentenceTransformer
30
- sentences = ["This is an example sentence", "Each sentence is converted"]
31
-
32
- model = SentenceTransformer('Dingyun-Huang/oe-sroberta-raw-mean')
33
- embeddings = model.encode(sentences)
34
- print(embeddings)
35
- ```
36
-
37
-
38
-
39
- ## Usage (HuggingFace Transformers)
40
- Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
41
-
42
- ```python
43
- from transformers import AutoTokenizer, AutoModel
44
- import torch
45
-
46
-
47
- #Mean Pooling - Take attention mask into account for correct averaging
48
- def mean_pooling(model_output, attention_mask):
49
- token_embeddings = model_output[0] #First element of model_output contains all token embeddings
50
- input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
51
- return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
52
-
53
-
54
- # Sentences we want sentence embeddings for
55
- sentences = ['This is an example sentence', 'Each sentence is converted']
56
-
57
- # Load model from HuggingFace Hub
58
- tokenizer = AutoTokenizer.from_pretrained('Dingyun-Huang/oe-sroberta-raw-mean')
59
- model = AutoModel.from_pretrained('Dingyun-Huang/oe-sroberta-raw-mean')
60
-
61
- # Tokenize sentences
62
- encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
63
-
64
- # Compute token embeddings
65
- with torch.no_grad():
66
- model_output = model(**encoded_input)
67
-
68
- # Perform pooling. In this case, mean pooling.
69
- sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
70
-
71
- print("Sentence embeddings:")
72
- print(sentence_embeddings)
73
- ```
74
-
75
-
76
-
77
- ## Evaluation Results
78
-
79
- <!--- Describe how your model was evaluated -->
80
-
81
- For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=Dingyun-Huang/oe-sroberta-raw-mean)
82
-
83
-
84
-
85
- ## Full Model Architecture
86
- ```
87
- SentenceTransformer(
88
- (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel
89
- (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
90
- )
91
- ```
92
-
93
- ## Citing & Authors
94
-
95
- <!--- Describe where people can find more information -->