--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: rsna_intracranial_hemorrhage_detection results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.8585666824869482 --- # rsna_intracranial_hemorrhage_detection This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co./google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.4344 - Accuracy: 0.8586 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6034 | 1.0 | 132 | 0.5659 | 0.8315 | | 0.4903 | 2.0 | 265 | 0.4868 | 0.8472 | | 0.5305 | 3.0 | 397 | 0.4742 | 0.8538 | | 0.5424 | 4.0 | 530 | 0.4650 | 0.8552 | | 0.4289 | 5.0 | 662 | 0.4508 | 0.8552 | | 0.4275 | 6.0 | 795 | 0.4394 | 0.8590 | | 0.4075 | 7.0 | 927 | 0.4767 | 0.8434 | | 0.3649 | 8.0 | 1060 | 0.4462 | 0.8595 | | 0.3934 | 9.0 | 1192 | 0.4323 | 0.8605 | | 0.3436 | 9.96 | 1320 | 0.4344 | 0.8586 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu117 - Datasets 2.14.5 - Tokenizers 0.13.3