--- library_name: transformers license: mit datasets: - DhruvParth/Mistral-7B-Instruct-v2.0-PairRM-DPO-Dataset language: - en --- # Model Card for DhruvParth/Mistral-7B-Instruct-v2.0-PairRM-DPO This model is a fine-tuned version of the Mistral-7B model, utilizing Direct Preference Optimization (DPO) to better align the model's responses with human preferences, specifically in a causal language modeling context. ## Model Details ### Model Description - Developed by: Dhruv Parthasarathy - Model type: Fine-tuned language model - Language(s) (NLP): English - License: MIT - Finetuned from model: Mistral-7B-Instruct-v2.0 ### Model Sources - **Repository:** https://huggingface.co./DhruvParth - **Paper:** Direct Preference Optimization (https://arxiv.org/abs/2305.18290) - **Demo:** (Will soon be made available) ## Uses This model is tailored for scenarios requiring alignment with human preferences in automated responses, suitable for applications in personalized chatbots, customer support, and other interactive services. ## Training Details ### Notebook The fine-tuning process and the experiments were documented in a Jupyter Notebook, available [here](https://github.com/parthasarathydNU/gen-ai-coursework/blob/main/advanced-llms/direct-preference-optimization/dpomistralfinetuning.ipynb). ### Training Configuration #### LoRA Configuration ```python LoraConfig( r=8, lora_alpha=8, lora_dropout=0.05, bias="none", task_type="CAUSAL_LM", target_modules=['k_proj', 'v_proj', 'q_proj', 'dense'] ) ``` #### BitsAndBytes Configuration ```python BitsAndBytesConfig( load_in_4bit=True, llm_int8_threshold=6.0, llm_int8_has_fp16_weight=False, bnb_4bit_compute_dtype=torch.bfloat16, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type="nf4", ) ``` #### Training Device Setup ```python device_map = {"": 0} ``` #### Training Arguments ```python DPOConfig( per_device_train_batch_size=2, gradient_accumulation_steps=4, gradient_checkpointing=True, learning_rate=5e-5, lr_scheduler_type="cosine", max_steps=50, save_strategy="no", logging_steps=1, output_dir=new_model, optim="paged_adamw_32bit", warmup_steps=5, ) ``` ### DPO Trainer Setup ```python DPOTrainer( model, args=training_args, train_dataset=updated_train_dataset, tokenizer=tokenizer, peft_config=peft_config, beta=0.1, max_prompt_length=512, max_length=1024, ) ``` ## Evaluation Details on the model's performance, evaluation protocols, and results will be provided as they become available. ## Citation If you use this model or dataset, please cite it as follows: **BibTeX:** ```bibtex @misc{dhruvparth_mistral7b_dpo_2024, author = {Dhruv Parthasarathy}, title = {Fine-tuning LLMs with Direct Preference Optimization}, year = {2024}, publisher = {GitHub}, journal = {GitHub repository}, url = {https://huggingface.co./DhruvParth/Mistral-7B-Instruct-v2.0-PairRM-DPO} } ``` **APA:** Dhruv Parthasarathy. (2024). Fine-tuning LLMs with Direct Preference Optimization. GitHub repository, https://huggingface.co./DhruvParth/Mistral-7B-Instruct-v2.0-PairRM-DPO For any queries or discussions regarding the project, please open an issue in the GitHub repository, post your comment in the community section, reach out to me via LinkedIn (https://www.linkedin.com/in/parthadhruv/) or contact me directly at parthasarathy.d@northeastern.edu.