update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- image-classification
|
5 |
+
- generated_from_trainer
|
6 |
+
datasets:
|
7 |
+
- imagefolder
|
8 |
+
metrics:
|
9 |
+
- accuracy
|
10 |
+
model-index:
|
11 |
+
- name: raildefectfft1
|
12 |
+
results:
|
13 |
+
- task:
|
14 |
+
name: Image Classification
|
15 |
+
type: image-classification
|
16 |
+
dataset:
|
17 |
+
name: defect
|
18 |
+
type: imagefolder
|
19 |
+
config: Dhika--defectfft
|
20 |
+
split: validation
|
21 |
+
args: Dhika--defectfft
|
22 |
+
metrics:
|
23 |
+
- name: Accuracy
|
24 |
+
type: accuracy
|
25 |
+
value: 0.7914285714285715
|
26 |
+
---
|
27 |
+
|
28 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
29 |
+
should probably proofread and complete it, then remove this comment. -->
|
30 |
+
|
31 |
+
# raildefectfft1
|
32 |
+
|
33 |
+
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the defect dataset.
|
34 |
+
It achieves the following results on the evaluation set:
|
35 |
+
- Loss: 0.7259
|
36 |
+
- Accuracy: 0.7914
|
37 |
+
|
38 |
+
## Model description
|
39 |
+
|
40 |
+
More information needed
|
41 |
+
|
42 |
+
## Intended uses & limitations
|
43 |
+
|
44 |
+
More information needed
|
45 |
+
|
46 |
+
## Training and evaluation data
|
47 |
+
|
48 |
+
More information needed
|
49 |
+
|
50 |
+
## Training procedure
|
51 |
+
|
52 |
+
### Training hyperparameters
|
53 |
+
|
54 |
+
The following hyperparameters were used during training:
|
55 |
+
- learning_rate: 0.0002
|
56 |
+
- train_batch_size: 30
|
57 |
+
- eval_batch_size: 8
|
58 |
+
- seed: 42
|
59 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
60 |
+
- lr_scheduler_type: linear
|
61 |
+
- num_epochs: 30
|
62 |
+
|
63 |
+
### Training results
|
64 |
+
|
65 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
66 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
67 |
+
| 1.3927 | 0.67 | 10 | 1.1308 | 0.6429 |
|
68 |
+
| 0.8111 | 1.33 | 20 | 0.9788 | 0.6629 |
|
69 |
+
| 0.513 | 2.0 | 30 | 0.7938 | 0.74 |
|
70 |
+
| 0.2943 | 2.67 | 40 | 0.8517 | 0.7343 |
|
71 |
+
| 0.2029 | 3.33 | 50 | 0.7300 | 0.7686 |
|
72 |
+
| 0.1629 | 4.0 | 60 | 0.7259 | 0.7914 |
|
73 |
+
| 0.1131 | 4.67 | 70 | 0.9103 | 0.7314 |
|
74 |
+
| 0.0955 | 5.33 | 80 | 0.8504 | 0.7657 |
|
75 |
+
| 0.0547 | 6.0 | 90 | 1.0702 | 0.72 |
|
76 |
+
| 0.0489 | 6.67 | 100 | 1.1708 | 0.6971 |
|
77 |
+
| 0.0382 | 7.33 | 110 | 1.2376 | 0.6943 |
|
78 |
+
| 0.0356 | 8.0 | 120 | 1.3361 | 0.6857 |
|
79 |
+
| 0.0311 | 8.67 | 130 | 1.1809 | 0.7229 |
|
80 |
+
| 0.0346 | 9.33 | 140 | 1.3405 | 0.7086 |
|
81 |
+
| 0.0378 | 10.0 | 150 | 1.1800 | 0.7171 |
|
82 |
+
| 0.0326 | 10.67 | 160 | 1.1292 | 0.7343 |
|
83 |
+
| 0.0319 | 11.33 | 170 | 1.0885 | 0.7371 |
|
84 |
+
| 0.0347 | 12.0 | 180 | 1.4550 | 0.6771 |
|
85 |
+
| 0.0283 | 12.67 | 190 | 1.1957 | 0.7314 |
|
86 |
+
| 0.0336 | 13.33 | 200 | 1.4648 | 0.6743 |
|
87 |
+
| 0.0175 | 14.0 | 210 | 1.4927 | 0.6771 |
|
88 |
+
| 0.0167 | 14.67 | 220 | 1.3760 | 0.7057 |
|
89 |
+
| 0.0149 | 15.33 | 230 | 1.2464 | 0.7229 |
|
90 |
+
| 0.0154 | 16.0 | 240 | 1.2553 | 0.7257 |
|
91 |
+
| 0.0135 | 16.67 | 250 | 1.2768 | 0.7314 |
|
92 |
+
| 0.0133 | 17.33 | 260 | 1.2857 | 0.7343 |
|
93 |
+
| 0.0122 | 18.0 | 270 | 1.2905 | 0.7314 |
|
94 |
+
| 0.0121 | 18.67 | 280 | 1.2929 | 0.7314 |
|
95 |
+
| 0.0115 | 19.33 | 290 | 1.2958 | 0.7314 |
|
96 |
+
| 0.0111 | 20.0 | 300 | 1.2985 | 0.7314 |
|
97 |
+
| 0.011 | 20.67 | 310 | 1.3020 | 0.7343 |
|
98 |
+
| 0.0103 | 21.33 | 320 | 1.3051 | 0.7371 |
|
99 |
+
| 0.0103 | 22.0 | 330 | 1.3075 | 0.7371 |
|
100 |
+
| 0.0104 | 22.67 | 340 | 1.3098 | 0.7371 |
|
101 |
+
| 0.0096 | 23.33 | 350 | 1.3128 | 0.7371 |
|
102 |
+
| 0.0095 | 24.0 | 360 | 1.3154 | 0.7371 |
|
103 |
+
| 0.0096 | 24.67 | 370 | 1.3162 | 0.7371 |
|
104 |
+
| 0.0093 | 25.33 | 380 | 1.3183 | 0.7371 |
|
105 |
+
| 0.0091 | 26.0 | 390 | 1.3200 | 0.7371 |
|
106 |
+
| 0.0092 | 26.67 | 400 | 1.3213 | 0.7371 |
|
107 |
+
| 0.0089 | 27.33 | 410 | 1.3219 | 0.7371 |
|
108 |
+
| 0.0092 | 28.0 | 420 | 1.3224 | 0.7371 |
|
109 |
+
| 0.0089 | 28.67 | 430 | 1.3228 | 0.7371 |
|
110 |
+
| 0.0089 | 29.33 | 440 | 1.3231 | 0.7371 |
|
111 |
+
| 0.0089 | 30.0 | 450 | 1.3233 | 0.7371 |
|
112 |
+
|
113 |
+
|
114 |
+
### Framework versions
|
115 |
+
|
116 |
+
- Transformers 4.30.1
|
117 |
+
- Pytorch 2.0.1+cu118
|
118 |
+
- Datasets 2.12.0
|
119 |
+
- Tokenizers 0.13.3
|